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ABSTRACT

This paper describes a method for automatically segmenting
and labelling sections in recordings of musical audio. We
incorporate the user’s expectations for segment duration as
an explicit prior probability distribution in a Bayesian frame-
work, and demonstrate experimentally that this method can
produce accurate labelled segmentations for popular music.

1. INTRODUCTION

This paper describes a method for incorporating our prior ex-
pectations about the size of musical structures or segments
into a system for producing labelled segmentations of musi-
cal audio. Automatically-generated segmentations have ap-
plication in audio fingerprinting, thumbnailing (see e.g. [1]),
content-based retrieval systems, summary generation and user
interface provision for navigation in audio editors.

Previous studies in segmentation have used various spec-
tral features such as timbre [2, 3, 4] or chroma [5, 6, 7, 8] to
generate time series of feature vectors. We do not address the
choice of audio features here, but instead examine the typical
subsequent use of the series of vectors.

Several studies [2, 5, 6, 7, 8] compute pairwise similar-
ity matrices between feature vectors with some distance mea-
sure for individual frames, then apply a filter of some form.
Others (e.g. [4]) perform k-means clustering between frames,
and then post-process this clustering by using an HMM with
fewer states, or generate labels by using an HMM directly on
the feature vectors and then average over a window [3].

These filtering or post-processing stages are introduced to
reduce noise in the classification, and to reintroduce the no-
tion of temporal closeness which was lost in the clustering;
ideally, the classification would be informed of our expecta-
tions and so not produce noise in the first place, and would
have temporal coherence built in.

In our previous work [9] we have avoided the need for
a post-processing stage by performing clustering with large
(of the order of 3s) analysis windows, but this is an equally
ad hoc way to address the expected scale of segment size,
and does not address the issue of temporal closeness beyond
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Fig. 1. Overview of our segmentation method.

the coherence of an individual feature frame. We therefore
introduce a prior probability distribution on the sizes of seg-
ments, and adjust the classification algorithms to incorporate
this prior; this probability distribution explicitly encodes our
assumptions regarding the segmentation.

This paper continues with a description of our method for
generating labelled segmentations of audio in section 2; we
present some empirical results in section 3, and draw conclu-
sions in section 4.

2. METHOD

Figure 1 shows an overview of our segmentation method;
nodes corresponding to input variables are shaded, and the
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double-bordered boxes represent probabilistic models. We
discuss the individual stages in more detail below.

2.1. Extracting features

The processing chain begins with a uniformly sampled mono-
phonic audio signal (from a single channel, as far as that is
possible) and breaks it into a sequence of short overlapping
fragments; our sample data was 16-bit mono at a 11.025kHz
sample rate, and we used a window size of 400ms with a
hop size of 200ms over these audio samples to generate a
constant-Q power spectrum with 1

12 th-octave resolution. This
power-spectrum is log-normalized and 20 principal compo-
nents are extracted, which along with the envelope magnitude
form 21-dimensional feature vectors, corresponding to the re-
sult of the extractFeatures node in fig. 1.

These vectors are used to train a Gaussian-observation
HMM with 60 states for each song, which then generate the
most probable state sequence for that song (the output of the
hmm probabilistic model node). These states are collected
into short-time histograms (short-term hist) over windows of
4 states with a hop size of 2 states.

2.2. Generating segments

Our segmentation algorithm models a segment as a sequence
of samples of HMM state histograms drawn from a class-
specific probability distributions, with the boundaries of the
segment being where the probability distribution changes; fol-
lowing [10], we can perform segmentation given a flat prior
probability by performing deterministic annealing on an Ex-
pectation-Minimization optimization over frame label assign-
ments and the class probability distributions.

The energy function for this optimization is

ε(c, θ) =

L∑

i

M∑

j

K∑

k

δkci
Xji log

Xji

Ajk

− log p(c). (1)

where M and K are parameters as in fig. 1, and L is the length
of the signal in histogram frames; A contains the prototype
class probability distributions, X the sequence of observed
histograms; and p(c) is the prior probability of segmentation
c.

However, except for the case of overly large analysis win-
dows (of the order of 3 seconds in [9]), this method with a
uniform prior p(c) fails to find long segments corresponding
to sections such as the verse or the chorus of songs; instead the
segmentations generated correspond to changes in low-level
audio features themselves.

In order to encode our interest in higher-level segments
into the segmentation algorithm, we incorporate an explicit
non-flat prior probability distribution p(c) on segmentations
into the segmentation procedure. We propose a probability
distribution for segment lengths pH(x) with a wide spread
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Fig. 2. Two ‘cliques’ including all local configurations and all
central interval reassignments. Each a, b, or c represents a se-
quence of sites classified a a, b, or c, so each arrow represents
a block assignment of the central section. The expressions
by the boxes show the relative probabilities of proposing the
central section. The arrows are labelled by the relative proba-
bility of the step according to the sampling distribution.

about a single peak, in terms of

εH(x, ν, γ) =
1

|ν|
x−ν + (γ + 1) log x (2)

as

pH(x) =
e−βεH(x,ν,γ)

∫
e−βεH(x,ν,γ)dx

, (3)

where in this investigation we set ν to be 2, penalizing short
segments strongly, and γ to 0. With γ = 0, the mode of the
distribution is always 1; we can arrange this to correspond to
any given time by measuring in those units, in this case 20s.
This then gives us the prior probability of a given segmenta-
tion as

p(c) =
∏

i

pH(leni(c)) (4)

where leni(c) denotes the length of the ith segment in c.
The presence of this prior probability distribution over

segment lengths has the effect of strongly coupling label as-
signments over the frames, so we can no longer use the usual
EM algorithm; there is no closed form for improving the cost
function by changing the segmentation c given class probabil-
ity distributions A. Instead, we explore the state space using
a block-Gibbs sampler allocating class labels to a domain se-
lected by a Wolff [11] algorithm, modified to ensure that de-
tailed balance holds given a non-uniform prior (see fig. 2); we
use these samples as probabilistic enhancements to the clus-
ter assignments, and perform deterministic annealing of the
assignments over the energy (eq. 1) as in [10] (this process is
denoted by to histSegment in fig. 1). A full description of this
step is in preparation; similar work for image analysis can be
found in [12].
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Nirvana:Smells Like Teen Spirit, ms(200)/ms(400), 1/12−octave
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Fig. 3. Results for ‘Smells Like Teen Spirit’ by Nirvana.
From top: spectrogram, cluster assignments, corresponding
segmentation, manual annotation. F (eq. 5) for this segmen-
tation is 0.95.

We then generate the final, labelled, segmentation by con-
sidering contiguous regions of the same class label as a seg-
ment, and inverting (maptimes) the effect of the windowing
operations to generate a segmentation over time. This seg-
mentation can then be examined (compare) against the an-
notation provided by a human expert, producing numerical
scores according to various evaluation metrics.

3. RESULTS

The segmentations performed for the results we present were
performed with the parameter for the number of classes set
to the number of classes in each song’s ground truth. Two
segmentations resulting from this process are displayed in fig.
3 (for ‘Smells Like Teen Spirit’ by Nirvana) and fig. 4 (for
‘Zombie’ by The Cranberries). The segmentation displayed
in fig. 3 is clearly very close to the ground truth annotation:
there are very minor disagreements over boundary positions,
but otherwise the regions are in close correspondence and the
labelling is consistent.

The segmentation in fig. 4 shows some interesting effects
of our algorithm when contrasted with the expert annotation.
Firstly, there is a deficiency in our system in that it is inca-
pable of detecting the difference between two adjacent iden-
tically-labelled segments and one large segment encompass-
ing the same time. Thus, the large segment around 50s (and
repeated at 150s) corresponds to an ABB pattern in the anno-
tation (where the A section appears similar to the B section).
Additionally, our algorithm has found some microstructure in
the second region of the annotation, dividing it (and its re-

Cranberries:Zombie, ms(200)/ms(400), 1/12−octave
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Fig. 4. Results for ‘Zombie’ by The Cranberries. From top:
spectrogram, cluster assignments, corresponding segmenta-
tion, manual annotation. F (eq. 5) for this segmentation is
0.71.

peats) into two alternating segments.
We compute precision and recall statistics based on an

adaptation of a performance measure in image segmentation
[13], computing the maximum overlapping segment in the
ground truth and the machine segmentation. This is similar
to the P and R statistics in [7] – the differences are that we
compute these measures over all segment labels, not just the
chorus (though we ignore the identity of the label) and that for
each section in the comparison, we consider only the largest
contiguously labelled section in the corresponding region, not
the sum. Figure 5 demonstrates the results for our corpus of
14 songs.

Similarly, to compare our results to previous results as far
as that is possible, following [7], we compute one particular
F measure [14]

F =
2PR

P + R
(5)

from our P and R statistics. The results for seven of the songs
lie above the curve for F = 0.75, used as a threshold in [7],
and the other seven have F ≥ 0.70; the mean F for the 14
songs is 0.78.

4. CONCLUSIONS

We have described a method explicitly incorporating a prior
distribution of segment lengths for generating labelled seg-
mentations of musical audio, and provided evidence (fig. 5)
that it can produce segmentations similar to annotations pro-
duced by a human expert (fig. 3) and that where the segmenta-
tion differs significantly (as in fig. 4) from the expert annota-
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Fig. 5. Precision vs recall for our segmentation over a cor-
pus of 14 songs, measured against a ground truth annotation
provided by a human expert. The solid line corresponds to
F = 0.75.

tion provided there is nevertheless a correspondence between
the structure of the segmentation and that of the music.

We believe that there is a need for a more sophisticated
method of evaluating segmentations of music. The evaluation
statistic we have used discards label information (though ex-
perimentally our segmentations have a high degree of label
correspondence with the annotations). We have suggested [9]
evaluations based on Mutual Information between segmen-
tation and annotation, which does capture label information;
however, while this assists in comparing different segmenta-
tion methods or parameter sets over the same corpus, it is not
clear how to aggregate this measure over disparate tracks into
a meaningful figure; nor is it clear how to map a particular re-
quirement into a threshold for application-specific evaluation.

This method for generating a segmentation, with its ex-
plicit prior probability for segment durations, can naturally
be extended to have label-specific prior distributions; while
a general prior should be broad, it is possible to incorporate
more domain knowledge – such as the features of a known
genre, or the output of other signal-processing tools such as a
beat extractor – into the prior distribution; for signals known
to come from Western popular music, having multiple priors
with modes at times corresponding to four bars, eight bars and
sixteen bars might be of interest.

We have not chosen tailored audio features for this investi-
gation, preferring to concentrate on the treatment of those fea-
tures. It is worth investigating the sensitivity of this method to
the corpus it is applied to and the features used; in particular,
it would be interesting to use the same features and corpus
as in [7]. Performance might also improve with the use of a
mixture of explicitly timbral and harmonic features, in con-
trast with the 1

12 th-octave features which we have used, so as
to be able to differentiate segments both on instrumentation
and on harmony.
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