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ABSTRACT

Automatic speech processing research has produced many advances
in the analysis of time series. Knowledge of the production and per-
ception of speech has guided the design of many useful algorithms,
and automatic speech recognition has been at the forefront of the ma-
chine learning paradigm. In contrast to the advances made in auto-
matic speech processing, analysis of other bioacoustic signals, such
as those from dolphins and bats, has lagged behind. In this paper, we
demonstrate how techniques from automatic speech processing can
significantly impact bioacoustic analysis, using echolocating bats as
our model animal. Compared to conventional techniques, machine
learning methods reduced detection and species classification error
rates by an order of magnitude. Furthermore, the signal-to-noise ra-
tio of an audible monitoring signal was improved by 12 dB using
techniques from noise-robust feature extraction and speech synthe-
sis. The work demonstrates the impact that speech research can have
across disciplines.

1. INTRODUCTION

Advances in automatic processing of speech has produced many use-
ful algorithms. For example, knowledge about the production and
perception of speech has led to several celebrated algorithms like
linear prediction [1], overlap-and-add synthesis [2], mel frequency
cepstral coefficients [3], and audio codecs like code-excited linear
prediction [4] and the popular MP3. These algorithms have signifi-
cantly impacted society and the way we communicate. Furthermore,
while the goal of a general-purpose automatic speech recognition
(ASR) system has not yet been fully realized, ASR research has
led the advances in the machine learning paradigm (i.e., data-driven
methods) through the use of hidden Markov models (HMMs) and
Gaussian mixture models (GMMs) [5]. ASR research has also pro-
duced several robust algorithms that elegantly improve recognition
performance such as embedded temporal derivatives (∆ and ∆∆ co-
efficients) [6], cepstral mean subtraction [7], perceptual linear pre-
diction [8], and, more recently, human factor cepstral coefficients
[9].

While the techniques for analyzing human speech have steadily
advanced over the past few decades, analysis of other bioacoustic
signals has remained static. In this paper, we demonstrate several
examples which showcase the potential that automatic speech pro-
cessing methods have on bioacoustic analysis. For our work, we
have chosen the echolocating bat as the model animal for several
reasons. Bats represent a quarter of all mammal species and are
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found in every ecosystem on the planet except for the extreme lati-
tudes [10], and bats play a significant environmental role in helping
to control insect populations, pollinate flowers, and disperse seeds.
Furthermore, the vast majority of bats belong to the suborder Mi-
crochiroptera, all of which are known to employ echolocation [11].
Echolocation is the use of acoustic chirps for the purposes of hunting
and navigation [12] and have been recorded and analyzed for the de-
tection and classification of bats [13, 14, 15] as well as for real-time
audio monitoring of the predominantly ultrasonic echolocation calls
[16]. In the following section we describe the use of machine learn-
ing methods, specifically the HMM and GMM, and robust feature
extraction techniques for acoustic detection and species classifica-
tion which reduce error rates by an order of magnitude compared
to conventional methods. Next, the robust features extracted for de-
tection and classification are used to synthesize echolocation calls,
increasing the signal-to-noise ratio (SNR) by 12 dB compared to
heterodyning and frequency division techniques.

2. EXPERIMENTS AND RESULTS

For all experiments, about 3000 echolocation calls were hand-labeled
from field recordings of 5 species: Pipistrellus bodenheimeri, Molos-
sus molossus, Lasiurus borealis, L. cinereus semotus, and Tadarida
brasiliensis. Echolocation calls are characterized by a modulated
fundamental frequency with duration on the order of 10 ms and con-
stantly emitted during flight at a rate of about 10 calls per second
(i.e., 10% duty cycle).

2.1. Detection

Detection is typically achieved by comparing only short-term en-
ergy estimates to a threshold [14], completely neglecting frequency
information. To improve detection performance, we increased the
amount of information available to the detector by using frame-based
frequency and log-energy estimates along with temporal derivatives
[17]. Fundamental frequency was estimated using a zero-padded
FFT following spectral mean subtraction (similar to cepstral mean
subtraction), which reduced noise power and equalized the noise
floor of recordings from different measurement platforms. The thresh-
old of energy was replaced with a threshold of log likelihood differ-
ence using a pair of GMMs to model the distribution of features from
both the calls and the background [18]. The GMMs were trained us-
ing 25 Gaussian kernels and standard maximum likelihood training
with full covariance matrices [19]. The detection experiment results
for the GMM and baseline energy detectors are shown in Figure 1.
The accuracy of the GMM detector at equal sensitivity and speci-
ficity was 96%, compared to 68% for the energy detector. Therefore,
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Fig. 1. Receiver operator characteristic curves for the GMM and
baseline energy detectors. The circles on the ROC curves indicate
the operating points with equal sensitivity and specificity.

the GMM detector error was 8 times lower than the baseline energy
detector at equal sensitivity and specificity.

An example of detector performance for a single pass of calls is
shown in Figure 2. The pass contains 25 hand-labeled calls, denoted
by gray bars in the figure. Figure 2 demonstrates how the broadband
energy detector distinguishes only the most prominent calls, near the
middle of the pass, from the background noise, while the GMM de-
tector outputs peaks significantly above the background output level
at the locations of all of the hand-labeled calls.

2.2. Classification

A classification experiment was performed on hand-labeled calls to
determine the species of the bat that produced each call. Three clas-
sifiers were tested in the experiment: a baseline discriminant func-
tion analysis (DFA) classifier commonly used in the bat literature
[20, 21], a GMM classifier, and an HMM classifier. The DFA clas-
sifier was trained with features most commonly used in the litera-
ture: minimum frequency, maximum frequency, frequency of peak
energy, and duration [13, 14]. All baseline features were determined
from the noise-robust features used by the GMM detector. In ad-
dition, both machine learning classifiers employed the same feature
vectors used with the GMM detector. The classifiers were tested in
a cross-validation experiment. For each of 20 trials, 50% of all calls
were uniformly randomly selected to train the three classifiers while
the remaining 50% of the calls were used to test the classifiers.

The cross-validation classification results are reported as the con-
fusion matrices in Tables 1 and 2 for the GMM and DFA classifiers,
respectively. A t-test between the GMM and HMM overall average
scores across all trials showed that the scores were not significantly
different (p > 0.9). For the GMM and HMM classifiers, the accu-
racy was 99.4 ± 0.2% correct, while the accuracy for the baseline
DFA classifier was 83.1 ± 1.1% correct. Thus, the DFA classifica-
tion error was 28 times larger than the error of the machine learning
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Fig. 2. Detector outputs for a single pass of 25 hand-labeled calls
from Lasiurus borealis using (a) a Gaussian mixture model detector,
and (b) a baseline detector. The gray bars denote the locations of
hand-labeled calls, and the horizontal black lines denote the thresh-
olds for equal sensitivity and specificity, denoted by the circles in
Figure 1.

classifiers.

Table 1. Confusion matrix for GMM classifier from cross-
validation experiment. Values in each cell are the average per-
centage of calls from the hand-labeled species for each row that
were classified as the species for each column over 20 trials. The
species are Pb: Pipistrellus bodenheimeri, Mm: Molossus molos-
sus, Lb: Lasiurus borealis, Lc: Lasiurus cinereus semotus, and Tb:
Tadarida brasiliensis. The overall percent correct over 20 trials was
99.4 ± 0.2%.

Pb Mm Lb Lc Tb
Pb 99.6 0 0 0 0.4

Mm 0.03 96.2 0 0 3.7
Lb 0 0 99.8 0.2 0
Lc 0 0 0.2 99.8 0
Tb 0 0.2 0 0 99.8

2.3. Audio monitoring

Echolocation calls from nearly all species of bats are above the fre-
quency range of human hearing, varying from 20 kHz to 250 kHz.
To monitor bats in the field, bat detectors use any of three strate-
gies to shift the echolocation calls into the audible range: 1) time
expansion, 2) frequency division, and 3) heterodyning [16]. Time
expansion simply reduces the sampling rate by a factor of 10 or 20
during playback, perfectly preserving frequency and temporal struc-
ture at the cost of missing large temporal blocks of data during play-
back. Frequency division detectors typically employ a zero-crossing
counter: when the counter is a multiple of the division factor, the bi-
nary output of the counter is flipped. Frequency division distorts the
amplitude of the original signal, so a short-term energy estimate may
be used to provide a temporal envelope for the frequency-divided
signal. Heterodyning modulates the input by a carrier frequency,
shifting the high-frequency echolocation call into the audible range.
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Table 2. Confusion matrix for DFA classifier from cross-validation
experiment, similar to Table 1. The overall percent correct over 20
trials was 83.1 ± 1.1%.

Pb Mm Lb Lc Tb
Pb 97.1 0.2 2.7 0 0

Mm 0.6 76.7 4.1 17.3 1.3
Lb 1.2 16.9 79.6 0.3 2.1
Lc 0 1.1 0.3 89.7 8.8
Tb 0 6.6 5.4 16.5 71.4

The carrier frequency may be fixed at a preset frequency (e.g., 25
or 40 kHz) or tunable in a bat detector. Heterodyning perfectly pre-
serves amplitude information but does not compress the bandwidth
of calls, which may span 50 kHz, into the audible range. Neither
frequency division nor heterodyning increase the duration of calls,
so shifted chirps sound like periodic clicks and pops.

The effective monitoring range of bat detectors is limited by
noise, either from the recording environment, electronic noise, or
noise from the frequency division or heterodyning mechanisms. The
intensity of echolocation calls decreases as a function of distance to
the bat due to spherical spreading and atmospheric attenuation. For
example, a 60 kHz tone propagating as a spherical wavefront in air
at 25◦ Celsius and 50% relative humidity is attenuated by 50 dB at
a distance of 7 m and 70 dB at a distance of 14 m from the source
[22]. To improve the SNR of a recorded signal, the noise-reduction
techniques for feature extraction used in the detection and classi-
fication experiments described above were employed to find short-
term estimates for the fundamental frequency and peak energy. The
frequency and energy estimates from non-overlapping frames were
then used to synthesize the echolocation and background signals.
For a set of frequencies ω(k) and amplitudes a(k) for each frame
k = [1 . . . K], the synthetic output x(n) using frames of length L
was constructed according to the following expressions:

nk = [1 . . . L] + (k − 1)L

Ak = a(k − 1) + (a(k) − a(k − 1))[1 . . . L]

x(nk) = Ak sin

(
2π

ω(k)

β

nk

fs
+ θ

)

θ ← θ + 2π
ω(k)

β

L

fs
(1)

where fs is the sampling rate, β is a frequency division factor, nk is
the index of length L into x for frame k, a(0) = a(1) by default,
and θ = 0 initially. The term Ak was used to linearly interpolate be-
tween a(k) and a(k−1) for frame k and produce smooth amplitude
transitions between frames.

Figures 3(a) through (c) show the original time series of a call
from Lasiurus borealis, a synthesized output of the original signal
with a frequency division factor β = 20, and a frequency division
output with temporal envelope and β = 20, respectively. Peak en-
ergy for the frequency division output in Figure 3(c) was 34.5 dB
above the noise floor, while peak energy for the synthetic output in
Figure 3(b) was 46.5 dB above the noise floor, a difference in SNR
of 12 dB. According to Lawrence and Simmons [22], a decrease in
the noise floor by 12 dB would extend the range of a 60 kHz signal
that was originally 50 dB above the noise floor at 25◦ C and 50%
relative humidity from 7 m to 11 m. A detection sphere with radius
11 m has almost 4 times the volume as a detection sphere of radius

7 m, significantly increasing the coverage of the detector without
changing the measurement equipment.
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Fig. 3. Example of audio monitoring signals from a single call from
Lasiurus borealis. The raw signal in (a) was used to create the syn-
thetic output in (b) according to Eq. 1 and the frequency division out-
put with amplitude envelope in (c) using a frequency division factor
β = 20. The peak SNR in (b) was 46.5 dB, compared to 34.5 dB in
(c).

3. DISCUSSION

The above examples of automatic detection, classification, and audio
monitoring of echolocating bats demonstrate the significant impact
that methods commonly used in automatic speech processing can
have on the analysis of non-human bioacoustic signals. Much of
the conventional analysis methods for echolocation signals heavily
rely on expert intervention, which contributes to the subjectivity of
results among researchers and stifles progress. Robust automated
analysis methods for echolocating bats would also significantly re-
duce the tedium of analyzing by hand the vast data typically gen-
erated from acoustic experiments due to the high sampling rate and
long recording sessions. Twelve hours of data recorded at 200 kHz,
16 bits per sample, from 4 recorders would generate about 69 GB of
data and require about 60 minutes for an expert to thoroughly hand
label calls from each minute of data [18]. Robust automated meth-
ods would allow bat researchers to spend less time managing data
and more time collecting data.
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4. CONCLUSIONS

Methods from automatic speech processing can significantly impact
bioacoustic research across disciplines. In this paper, we demon-
strated the impact of methods developed for human speech have on
the detection, species classification, and audio monitoring of echolo-
cating bats. Using spectral mean subtraction to reduce the noise
around the fundamental frequencies of echolocation calls, frequency
and peak energy estimates were extracted according to the frame-
based machine learning paradigm and used to train GMMs for de-
tection and a GMM and HMM for species classification. The GMM
detector produced 8 times fewer errors compared to a conventional
energy-based detector, and the machine learning classifiers produced
28 times fewer errors compared to a conventional DFA classifier. As
ASR research discovered 2 decades ago for human speech, machine
learning algorithms use more information and account for variations
in the data better than human-expert based methods. Furthermore,
a synthetic signal, constructed from frequency and energy features
used for detection and classification, was constructed which reduced
the noise floor by 12 dB compared to the raw signal and significantly
increased the volume of the detection sphere around a detector given
a particular example recording environment.
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