
A SLIDING-WINDOW KERNEL RLS ALGORITHM AND ITS APPLICATION TO
NONLINEAR CHANNEL IDENTIFICATION

Steven Van Vaerenbergh, Javier Vı́a and Ignacio Santamarı́a

Dept. of Communications Engineering, University of Cantabria, Spain
E-mail: {steven,jvia,nacho}@gtas.dicom.unican.es

ABSTRACT

In this paper we propose a new kernel-based version of the
recursive least-squares (RLS) algorithm for fast adaptive non-
linear filtering. Unlike other previous approaches, we com-
bine a sliding-window approach (to fix the dimensions of the
kernel matrix) with conventional L2-norm regularization (to
improve generalization). The proposed kernel RLS algorithm
is applied to a nonlinear channel identification problem (specif-
ically, a linear filter followed by a memoryless nonlinearity),
which typically appears in satellite communications or digital
magnetic recording systems. We show that the proposed al-
gorithm is able to operate in a time-varying environment and
tracks abrupt changes in either the linear filter or the nonlin-
earity.

1. INTRODUCTION

In recent years a number of kernel methods, including support
vector machines [1], kernel principal component analysis [2],
kernel Fisher discriminant analysis [3] and kernel canonical
correlation analysis [4, 5] have been proposed and success-
fully applied to classification and nonlinear regression prob-
lems. In their original forms, most of these algorithms cannot
be used to operate online since a number of difficulties are in-
troduced by the kernel methods, such as the time and memory
complexities (because of the growing kernel matrix) and the
need to avoid overfitting of the problem.

Recently a kernel RLS algorithm was proposed that dealt
with both difficulties [6]: by applying a sparsification proce-
dure the kernel matrix size was limited and the order of the
problem was reduced. In this paper we present a different
approach, applying a sliding-window approach and conven-
tional regularization. This way the size of the kernel matrix
can be fixed rather than limited, allowing the algorithm to op-
erate online in time-varying environments.

The basic idea of kernel methods is to transform the data
xi from the input space to a high dimensional feature space
of vectors Φ(xi), where the inner products can be calculated
using a positive definite kernel function satisfying Mercer’s
condition [1]: κ(xi, xj) = 〈Φ(xi),Φ(xj)〉. This simple and
elegant idea, also known as the “kernel trick”, allows inner

This work was supported by MEC (Ministerio de Educación y Ciencia)
under grant TEC2004-06451-C05-02.

products in the feature space to be computed without making
direct reference to the feature vectors.

A common nonlinear kernel is the Gaussian kernel

κ(x, y) = exp
(
−‖x − y‖2

2σ2

)
. (1)

This kernel will be used to calculate the elements of a kernel
matrix. In the sliding-window approach, updating this kernel
matrix means first removing its first row and first column and
then adding a new row and column at the end, based on new
observations. Calculation of its inverse is needed to update
the algorithm’s solution. To this end, two matrix inversion
formulas were derived in Appendix A. One of them has al-
ready been used in kernel methods [7] but in order to fix the
dimensions of the kernel matrix we also introduce a comple-
mentary formula.

The rest of this paper is organized as follows: in Section 2
a kernel transformation is introduced into linear least-squares
regression theory. A detailed description of the proposed al-
gorithm is given in Section 3, and in Section 4 it is applied to
a nonlinear channel identification problem. Finally, Section 5
summarizes the main conclusions of this work.

2. LEAST-SQUARES REGRESSION

2.1. Linear Methods

The least-squares (LS) criterion [8] is a widely used method
in signal processing. Given a vector y ∈ R

N×1 and a data
matrix X ∈ R

N×M of observations, it consists in seeking the
optimal vector h ∈ R

M×1 that solves

J = min
h

‖y − Xh‖2. (2)

It should be clear that the solution h can be represented in the
basis defined by the rows of X. Hence it can also be written as
h = XT a, making it a linear combination of the input patterns
(this is sometimes denoted as the “dual representation”).

For many problems however, not all data are known in
advance and the solution has to be re-calculated as the new
observations become available. An online algorithm is then
needed, which in case of linear problems is given by the well-
known recursive least-squares (RLS) algorithm [8].

V ­ 7891­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

2.2. Kernel Methods

The linear LS methods can be extended to nonlinear versions
by transforming the data into a feature space. Using the trans-
formed vector h̃ ∈ R

M ′×1 and the transformed data matrix
X̃ ∈ R

N×M ′
, the LS problem (2) can be written in feature

space as

J ′ = min
h̃

‖y − X̃h̃‖2. (3)

The transformed solution h̃ can now also be represented in the
basis defined by the rows of the (transformed) data matrix X̃,
namely as

h̃ = X̃
T
α. (4)

Moreover, introducing the kernel matrix K = X̃X̃
T

the LS
problem in feature space (3) can be rewritten as

J ′ = min
α

‖y − Kα‖2 (5)

in which the solution α is an N × 1 vector. The advantage
of writing the nonlinear LS problem in the dual notation is
that thanks to the “kernel trick”, we only need to compute K,
which is done as

K(i, j) = κ(Xi, Xj), (6)

where Xi and Xj are the i-th and j-th rows of X. As a con-
sequence the computational complexity of operating in this
high-dimensional space is not necessarily larger than that of
working in the original low-dimensional space.

2.3. Measures Against Overfitting

For most useful kernel functions, the dimension of the feature
space, M ′, will be much higher than the number of available
data points N (for instance, in case the Gaussian kernel is
used the feature space will have dimension M ′ = ∞). In
these cases, Eq. (5) could have an infinite number of solu-
tions, representing an overfit problem.

Various techniques to handle this overfitting have been
presented. One possible method is to reduce the order of the
feature space [6, 4, 5]. A second method, used here, is to regu-
larize the solution. More specifically, the norm of the solution
h̃ is penalized to obtain the following problem:

J ′′ = min
h̃

‖y − X̃h̃‖2 + c‖h̃‖2 (7)

= min
α

‖y − Kα‖2 + cαT Kα (8)

whose solution is given by

α = K−1
regy (9)

with Kreg = (K + cI), c a regularization constant and I the
identity matrix.

3. THE ONLINE ALGORITHM

In various situations it is preferred to have an online, i.e. re-
cursive, version instead of a batch algorithm. In particular,
if the data points y are the result of a time-varying process,
an online algorithm able to track these time variations can be
designed. In any case, the key feature of an online algorithm
is that the number of computations required per new sample
must not increase as the number if samples increases.

3.1. A Sliding-Window Approach

The presented algorithm is a regularized kernel version of the
RLS algorithm. An online prediction setup assumes we are
given a stream of input-output pairs {(x1, y1), (x2, y2), . . . }.
The sliding-window approach consists in only taking the last
N pairs of this stream into account. For window n, the obser-
vation vector yn = [yn, yn−1, . . . , yn−N+1]T and observa-
tion matrix Xn = [xn, xn−1, . . . , xn−N+1]T are formed, and

the corresponding regularized kernel matrix Kn = X̃nX̃
T

n +cI
can be calculated.

Note that it is necessary to limit the number of data vectors
xn, N , for which the kernel matrix is calculated. Contrary to
standard linear RLS, for which the correlation matrices have
fixed sizes depending on the (fixed) dimension of the input
vectors M , the size of the kernel matrix in an online scenario
depends on the number of observations N .

In [6], a kernel RLS algorithm is designed that limits the
matrix sizes by means of a sparsification procedure, which
maps the samples to a (limited) dictionary. It allows both to
reduce the order of the feature space (which prevents overfit-
ting) and to keep the complexity of the algorithm bounded.
In our approach these two measures are obtained by two dif-
ferent mechanisms. On one hand, the regularization against
overfitting is done by penalizing the solutions, as in (9). On
the other hand, the complexity of the algorithm is reduced
by considering only the observations in a window with fixed
length. The advantage of the latter approach is that it is able to
track time variations without any extra computational burden.

3.2. Updating the Inverse of the Kernel Matrix

The calculation of the updated solution αn requires the cal-
culation of the N × N inverse matrix K−1

n for each window.
This is costly both computationally and memory-wise (requir-
ing O(N3) operations). Therefore an update algorithm is de-
veloped that can compute K−1

n solely from knowledge of the
data of the current window {Xn, yn} and the previous K−1

n−1.
The updated solution αn can then be calculated in a straight-
forward way using Eq. (9).

Given the regularized kernel matrix Kn−1, the new reg-
ularized kernel matrix Kn can be constructed by removing
the first row and column of Kn−1, referred to as K̂n−1, and
adding kernels of the new data as the last row and column:

Kn =
[

K̂n−1 kn−1(xn)
kn−1(xn)T knn + c

]
(10)

V ­ 790

Algorithm 1 Summary of the proposed adaptive algorithm.

Initialize K0 as (1 + c)I and K−1
0 as I/(1 + c)

for n = 1, 2, . . . do
Obtain K̂n−1 out of Kn−1

Calculate K̂
−1

n−1 according to Eq. (12)
Obtain Kn according to Eq. (10)
Calculate K−1

n according to Eq. (11)
Obtain the updated solution αn = K−1

n yn

end for

where kn−1(xn) = [κ(xn−N+1, xn), . . . , κ(xn−1, xn)]T and
knn = κ(xn, xn).

Calculating the inverse kernel matrix K−1
n is done in two

steps, using the two inversion formulas derived in appendices
A.1 and A.2. Note that these formulas do not calculate the
inverse matrices explicitly, but rather derive them from known
matrices maintaining an overall time and memory complexity
of O(N2) of the algorithm.

First, given Kn−1 and K−1
n−1, the inverse of the N − 1 ×

N − 1 matrix K̂n−1 is calculated according to Eq. (12). Then
K−1

n can be calculated applying the matrix inversion formula

from Eq. 11, based on the knowledge of K̂
−1

n−1 and Kn. The
complete algorithm is summarized in Alg. (1).

4. EXAMPLE PROBLEM: IDENTIFICATION OF A
NONLINEAR WIENER SYSTEM

In this section, we consider the identification problem for a
nonlinear Wiener system, and compare the performance of the
proposed kernel RLS algorithm to the standard approach us-
ing a multilayer perceptron (MLP). Since kernel methods pro-
vide a natural nonlinear extension of linear regression meth-
ods, the proposed system is supposed to perform well com-
pared to the MLP [7].

4.1. Experimental Setup

The nonlinear Wiener system is a well-known and simple
nonlinear system which consists of a series connection of a
linear filter and a memoryless non-linearity (see Fig. 1). Such
a nonlinear channel can be encountered in digital satellite
communications [9] and in digital magnetic recording [10].
Traditionally, the problem of blind nonlinear equalization or
identification has been tackled by considering nonlinear struc-
tures such as MLPs [11], recurrent neural networks [12], or
piecewise linear networks [13].

Here we consider a supervised identification problem, in
which moreover at a given time instant the linear channel co-
efficients are changed abruptly to compare the tracking capa-
bilities of both algorithms: During the first part of the sim-
ulation, the linear channel is H1(z) = 1 + 0.0668z−1 −
0.4764−2 + 0.8070−3 and after receiving 500 symbols it is
changed into H2(z) = 1−0.4326z−1−0.6656z−2+0.7153−3.
A binary signal is sent through this channel and then the non-
linear function y = tanh(x) is applied on it, where x is the

s[n]
x[n] y[n]

v[n]

z[n]H(z) f(.)

Fig. 1. A nonlinear Wiener system.

linear channel output. Finally, white Gaussian noise is added
to match an SNR of 20dB. The Wiener system is then treated
as a black box of which only input and output are known.

4.2. Simulation Results

System identification was first performed by an MLP with 8
neurons in its hidden layer and then using the sliding-window
kernel RLS algorithm, for two different window sizes N . For
both methods we applied time-embedding techniques in which
the length L of the linear channel was known. More specif-
ically, the used MLP was a time-delay MLP with L inputs,
and the input vectors for the kernel RLS algorithm were time-
delayed vectors of length L, s(n) = [s(n−L+1), . . . , s(n)].
In each iteration, system identification was performed by es-
timating the output sample corresponding to the next input
sample, and comparing it to the actual output. The mean
square error (MSE) for both approaches is shown in Fig. 2.
Most noticeable is the fast convergence of the kernel RLS
algorithm: convergence time is of the order of the window
length.

Further note that the structure of the nonlinear system has
not been exploited while performing identification. Obvi-
ously, the presented kernel RLS method can be extended and
used as the basis of a more complex algorithm that models
better the known system structure. For instance, the solution
to the nonlinear Wiener identification problem could be found
as the solution to two coupled LS problems, where the first
one applies a linear kernel on the input data and the second
one applies a nonlinear kernel on the output data. Also, the
implications of not knowing the correct linear channel length
remain to be studied. We will consider this and other exten-
sions as future research lines.

5. CONCLUSIONS

A kernel-based version of the RLS algorithm was presented.
Its main features are the introduction of regularization against
overfitting (by penalizing the solutions) and the combination
of a sliding-window approach and efficient matrix inversion
formulas to keep the complexity of the problem bounded.
Thanks to the use of a sliding-window the algorithm is able to
provide tracking in a time-varying environment.

First results of this algorithm are promising, and suggest it
can be extended to deal with the nonlinear extensions of most
problems that are classically solved by linear RLS. Future re-
search lines also include its direct application to online kernel
canonical correlation analysis (kernel CCA).

V ­ 791

0 500 1000 1500
−25

−20

−15

−10

−5

0

5

10

15

20

iterations

M
SE

 (
dB

) MLP

kernel RLS, N=75
kernel RLS, N=150

Fig. 2. MSE of the identification of the nonlinear Wiener sys-
tem of Fig. 1, for the standard method using an MLP and for
the window-based kernel RLS algorithm with window length
N = 150 (thick curve) and N = 75 (thin curve). A change
in filter coefficients of the nonlinear Wiener system was in-
troduced after 500 iterations. The results were averaged out
over 250 Monte-Carlo simulations.

6. REFERENCES

[1] V. N. Vapnik, The Nature of Statistical Learning Theory,
Springer-Verlag New York, Inc., New York, USA, 1995.

[2] B. Schölkopf, A. J. Smola, and K.-R. Müller, “Non-
linear component analysis as a kernel eigenvalue prob-
lem,” Neural Computation, vol. 10, no. 5, pp. 1299–
1319, 1998.

[3] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-
R. Müller, “Fisher discriminant analysis with kernels,”
in Proc. NNSP’99, Y.-H Hu, J. Larsen, E. Wilson, and
S. Douglas, Eds. Jan. 1999, pp. 41–48, IEEE.

[4] F. R. Bach and M. I. Jordan, “Kernel independent com-
ponent analysis,” Journal of Machine Learning Re-
search, vol. 3, pp. 1–48, 2003.

[5] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor,
“Canonical correlation analysis: An overview with ap-
plication to learning methods,” Technical Report CSD-
TR-03-02, Royal Holloway University of London, 2003.

[6] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive
least squares-algorithm,” IEEE Transactions on Signal
Processing, vol. 52, no. 8, Aug. 2004.

[7] B. Schölkopf and A. J. Smola, Learning with Kernels,
The MIT Press, Cambridge, MA, 2002.

[8] A.H. Sayed, Fundamentals of Adaptive Filtering, Wiley,
New York, USA, 2003.

[9] G. Kechriotis, E. Zarvas, and E. S. Manolakos, “Using
recurrent neural networks for adaptive communication
channel equalization,” IEEE Trans. on Neural Networks,
vol. 5, pp. 267–278, Mar 1994.

[10] N. P. Sands and J. M. Cioffi, “Nonlinear channel models
for digital magnetic recording,” IEEE Trans. Magn., vol.
29, pp. 3996–3998, Nov 1993.

[11] D. Erdogmus, D. Rende, J. C. Principe, and T. F. Wong,
“Nonlinear channel equalization using multilayer per-
ceptrons with information-theoric criterion,” in Proc.
IEEE Workshop on Neural Networks and Signal Pro-
cessing XI, Falmouth, MA, Sept 2001, pp. 401–451.

[12] T. Adali and X. Liu, “Canonical piecewise linear net-
work for nonlinear filtering and its application to blind
equalization,” Signal Process., vol. 61, no. 2, pp. 145–
155, Sept 1997.

[13] P. W. Holland and R. E. Welch, “Robust regresison us-
ing iterative reweighted least squares,” Commun. Statist.
Theory Methods, vol. A. 6, no. 9, pp. 813–827, 1997.

A. MATRIX INVERSION FORMULAS

A.1. Adding a row and a column

To a given non-singular matrix A a row and column are added
as shown below, resulting in matrix K. The inverse matrix
K−1 can then be expressed in terms of the known elements
and A−1 as follows:

K =
[

A b
bT d

]
, K−1 =

[
E f
fT g

]

⇒
⎧⎨
⎩

AE + bfT = I
Af + bg = 0
bT f + dg = 1

⇒ K−1 =
[
A−1(I + bbT A−1Hg) −A−1bg

−(A−1b)T g g

]
(11)

with g = (d − bT A−1b)−1.

A.2. Removing the first row and column

From a given non-singular matrix K a row and column are
removed as shown below, resulting in matrix D. The inverse
matrix D−1 can then easily be expressed in terms of the known
elements of K−1 as follows:

K =
[
a bT

b D

]
, K−1 =

[
e fT

f G

]

⇒
{

be + Df = 0
bfT + DG = I

⇒ D−1 = G − ffT /e. (12)

V ­ 792

