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ABSTRACT
We introduce a novel adaptive paraunitary approach to be

used for the blind deconvolution of all deconvolvable MIMO

mixing systems with memory. The proposed adaptive ap-

proach is based on the use of alternating projections technique

for the enforcement of the paraunitary constraint. The use

of this approach enables extension of various instantaneous

Blind Source Separation (BSS) approaches to handle the con-

volutive BSS case. Three such methods, namely FastICA,

Multi User Kurtosis and BSS for Bounded Magnitude signals

are provided to illustrate the use of this approach.

1. INTRODUCTION

In the Blind Source Separation area, a current focus of re-

search is the extension of the methods developed for the in-

stantaneous BSS problems to the convolutive BSS separation

problems. However, this extension is not trivial due to the pa-

raunitary constraint that arises in implicit or explicit Higher

Order Statistics (HOS) optimization problems targetting to re-

solve the phase ambiguity (due to mixing in space and time),

which can not be resolved using only second order statistics

(SOS). The goal of this article is to provide a relatively simple

and intuitive approach for the incorporation of the paraunitary

constraint into the BSS approaches.

One key result in extending BSS procedures to convolu-

tive mixuters is the theorem due to Inouye et. al. in [1], which

states that a MIMO channel H(z) is blindly equalizable (or

deconvolvable) if and only if it can be factorized as

H(z) = HI(z)HP (z), (1)

where HI(z) is irreducible and HP (z) is paraunitary. This

theorem naturally inspires the following two step procedure

for the MIMO Blind Deconvolution: SOS based whitening

procedure to compensate the irreducible component of the

mixing transfer matrix followed by an HOS based method to

identify and/or compensate the paraunitary component.

There is a considerable amount of research done related

to the whitening step which are based on the linear prediction
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(see for example [2, 3]). The area that probably needs more

attention is the second step which is the design of algorithms

for the blind deconvolution of paraunitary systems.

If we look at the pioneering work done in this area: Mat-

suoka et.al. introduced Cayley Transform based approach to

convert paraunitary constraint into para-skew-hermitian con-

straints [4]. In [5] De Lathauwer et. al. used the parametriza-

tion based on the decomposition of paraunitary transfer ma-

trices in terms of simple degree one paraunitary blocks and

unitary matrices. Recently, Douglas et.al. introduced an it-

erative correction procedure to be applied after the FastICA

gradient update that targets to preserve the paraunitariness of

the search transfer matrix [3].

In this article we introduce another iterative procedure to

enforce the paraunitariness constraint and apply it to different

instantaneous BSS approaches to extend their use to convolu-

tive BSS case. The approach is based on the fact that the con-

volution matrices of the paraunitary matrices have orthonor-

mal rows . Therefore the iterative procedure is based on al-

ternating projections on the set of matrices with orthonormal

rows and the set of block convolution matrices.

The organization of the article is as follows. In Section 2

we introduce the convolutive BSS setup that we use through-

out the article. In Section 3 the proposed adaptive paraunitary

approach and its application to different BSS criteria is pro-

vided. A simulation example is provided in Section 4. Finally,

Section 5 is the conclusion.

2. CONVOLUTIVE BSS SETUP

The components of the blind source separation setup that we

consider throughout the article:

• s1(k), s2(k), . . . , sp(k) are source signals where it is

assumed that they are all i.i.d with zero mean and unity

variance (without loss of generality), and mutually in-

dependent of each other.

• The source signals are mixed by a MIMO system with a
q×p transfer matrix H(z), which has q outputs denoted
by y1(k), y2(k), . . . , yq(k). In z-transform domain, we
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can write
ˆ

y1(z) y2(z) . . . yq(z)
˜T

| {z }
y(z)

= H(z)

ˆ
s1(z) s2(z) . . . sp(z)

˜T

| {z }
s(z)

.

We assume that H(z) is an equalizable channel such

that it can be written as in (1). The problem boils down

to an instantaneous BSS problem after the whitening

if the paraunitary matrix HP (z) is equal to a unitary

matrix or to a transfer function of the form

HP (z) = diag(zd1 , . . . , zdp)Φ (2)

where the diagonal matrix corresponds to delaying of

sources with integer delays dk and Φ is a unitary map-

ping.

• Separator W(z) is a q × p transfer matrix, where the

separator output can be written as

o(z) = WT (z)y(z). (3)

We assume that the W(z) is decomposed as W(z) =
Wpre(z)Θ(z). Here Wpre(z) is the q × p whitening

matrix and x(z) = WT
pre(z)y(z) is the whitened mix-

tures. Since WT
pre(z)HI(z) = Φ where Φ is a unitary

matrix, the effective mapping between x(z) and s(z) is

equivalent to

x(z) = WT
pre(z)y(z) (4)

= WT
pre(z)HI(z)HP (z)s(z) (5)

= ΦHP (z)s = H′
P (z)s(z) (6)

The goal of adaptive paraunitary stage is to train the

paraunitary transfer function Θ(z) =
∑L−1

k=0 Θkzk (

whose order should be greater than or equal to H′
P (z))

where the goal is to compensate the effective channel

H′
P (z), i.e., to obtain a Θ(z) for which

ΘT (z)H′
P (z) = diag(ejφ1zd1 , . . . , ejφpzdp)E (7)

where dk’s and φk’s are delays and phase ambiguities

of the recovered sources respectively, and E is a per-

mutation matrix representing permutation ambiguity.

We introduce following matrices corresponding to the

transfer functionΘ(z) and its adaptation:

– The cascaded impulse response matrix:

Υ =
[

ΘT
0 ΘT

1 . . . ΘT
L−1

]T
, (8)

– The convolution matrix:

TL(Θ(z)) =
2
6664

Θ0 Θ1 Θ2 . . . ΘL−1 0 . . . 0
0 Θ0 Θ1 . . . ΘL−2 ΘL−1 . . . 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 . . . 0 Θ0 . . . . . . . . . ΘL−1

3
7775

which has size Lp × (2L − 1)p.

– Input data matrix:

X =

2
6664

x(0) x(1) . . . x(Ω − 1)
x(−1) x(0) . . . x(Ω − 1)

.

.

.
.
.
. . . .

.

.

.
x(−L + 1) x(−L + 2) . . . x(Ω − L)

3
7775 ,

where Ω is the output window size.

– Output matrix

O =
[

o(0) . . . o(Ω − 1)
]

= ΥT X.

3. ADAPTIVE PARAUNITARY APPROACH

We can formulate a general adaptive paraunitary approach as

the optimization problem in the form

optimize J (Θ(z),X)
s. t. Θ(z)ΘH(z−∗) = I.

where J is the cost function to be minimized or maximized.

A typical gradient (or subgradient) based adaptation proce-

dure consists of following two steps:

Step 1 Υ(i+1) = Υ(i) + C(i)

Step 2 Υ(i+1) = MP(Υ
(i+1

)

where Step 1 is the gradient (or subgradient) based correction

on Υ using correction matrix C(i) and Step 2 is the enforce-

ment of the paraunitary constraint through the mapping MP .

Step 1 can be easily generalized from instantaneous BSS

approaches. The critical step is Step 2 where we need an effi-

cient method for the enforcement of paraunitary constraint.

Our approach for the design of mapping MP is inspired

by the basic property of paraunitary transfer matrices that is

described by the following theorem [6]:

Theorem 1: A p×p transfer function Θ(z) of order L−1
is paraunitary if and only if the Lp × (2L − 1)p convolution

matrix TL(Θ(z)) has orthonormal rows.

Therefore, the mapping MP should target at obtaining

an Υ(i+1) with a corresponding convolution matrix with or-

thonormal rows. Taking this fact as the central point, we de-

fine MP based on the alternative projections between the fol-

lowing two sets which are subsets of CLp×(2L−1)p:

A1 = {A ∈ CLp×(2L−1)p | AAH = I},

and

A2 = {A ∈ CLp×(2L−1)p | A is a Lp × (2L − 1)p
block convolution matrix with p × p blocks}

Note that the intesection of these two sets

A = A1

⋂
A2 (9)
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would be the set of block convolution matrices with orthonor-

mal rows which is the set of block convolution matrices cor-

responding to the set of paraunitary operators. Therefore, the

task of projecting Θ(i+1)(z) (transfer function corresponding

to Υ(i+1)) to set of paraunitary matrices is equivalent to pro-

jecting TL(Θ(i+1)(z)) to the set A.

Using the fact that A is the intersection of A1 and A2,

we can apply alternating projections between the the sets A1

and A2 for the goal of enforcing paraunitary constraints. We

should note that although the set A2 is convex, A1 is not,

and therefore, this wouldn’t be a POCS algorithm The reason

for this choice is that as there is no known explicit method

for the projection to A, however, we have explicit methods

for the projections to the sets A1 and A2 as outlined by the

following theorems:

Theorem 2 (Projection to set A1): Let B ∈ CLp×(2L−1)p

with a singular value decomposition

B = U
[

Σ 0
]
VH (10)

where U ∈ CLp×Lp, V ∈ C(2L−1)p×(2L−1)p are unitary

matrices, and Σ ∈ �Lp×Lp is a diagonal matrix with non-

diagonal entries. Then A ∈ A1 that minimizes ‖B − A‖2
F is

given by

A = U
[

I O
]
VH . (11)

Proof: See e.g. [7].

Theorem 3 (Projection to set A2): Let B ∈ CLp×(2L−1)p.

Then A ∈ A2 that minimizes ‖B − A‖2
F is given by

A = TL(C(z)), (12)

where C(z) =
∑L−1

k=0 Ckzk and

Ck =
1
L

L−1∑

l=0

B1+lp:p+lp,(k−1)∗p+1+lp:(k−1)∗p+p+lp

k = 0, . . . ,L − 1. (13)

Proof: If we consider A as the convolution matrix of a trans-

fer matrix C(z) with order L − 1, then

‖B − A‖2
F = ‖B − TL(C(z))‖2

F

=
L−1∑

k=0

L−1∑

l=0

‖Ck − B1+lp:p+lp,(k−1)∗p+1+lp:(k−1)∗p+p+lp‖2
F

+terms independent of Ck’s,

which is clearly minimized by Ck’s in (13).

As a result, we can outline the method based on alternat-

ing projections as follows:

• let PA1 , PA2 denote the projection operators defined

by Theorem 3 and Theorem 4 respectively.

• let k̄ be the maximum number of iterations.

Algorithm

S0. Set k = 1, B(0) = TL(Θ(i+1)(z))

S1. B(k) = PA1(B
(k−1)),

S2. B(k) = PA2(B
(k)),

S3. Set k = k + 1, if k ≤ k̄ go to S1,

S4. Terminate.

We can provide following specific algorithms based on

this two step procedure with alternative projections mapping:

(Examples can be extended for other BSS algorithms with

similar structure)

BSS for Magnitude Bounded Sources: (MB-BSS) (Intro-

duced in [8] and [9])

Υ(i+1) = Υ(i) − µ(i)sign(�e{O(i)

m(i),n(i)})X̄:,n(i)eT
m(i)

Υ(i+1) = MP {Υ(i+1)},

where O(i)

m(i),n(i) is the output for which the maximum real

magnitude is achieved, µ(i) is the step size and ek is the kth

standard basis vector. Note that this algorithm exploits, in ad-

dition to independence, the boundedness of the source signals

assuming

sup�e{sl} = sup Im{sl} = − inf �e{sl}
= − inf Im{sl} = M. (14)

which is a good fit for digital communications applications.

Multi User Kurtosis Algorithm (MUK) ([10])

Υ(i+1) = Υ(i) + µ(i)sign(Ks)Xi,:O(i)

Υ(i+1) = MP {Υ(i+1)},

where Ks is the kurtosis of the sources and

O(i) =
[
|o1(i)|2o1(i) . . . |op(i)|2op(i)

]
.

FastICA( [11])

Υ(i+1)
l,: =

1
N

N∑

k=1

((X̄k,:O
(i)
k,:g(|O(i)

k,:|2)) − (g(|O(i)
k,:|2) +

|O(i)
k,:|2g′(|O

(i)
k,:|2))Υ

(i)
l,: ) l = 1, . . . , p

Υ(i+1) = MP {Υ(i+1)}

where g is the derivative of the nonlinear learning function G
and g′ is the derivative of g.

4. EXAMPLE

In order to illustrate the use of the proposed method we con-

sider a scenario with 4 sources. We assume a random pa-

raunitary mapping (with order 4) between sources and mix-

tures (this can be considered as the equivalent setting after
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Fig. 1. The SDR convergence curves and the final outputs.

a perfect whitening). Inputs are 16-QAM digital communi-

cations signals. Mixtures are corrupted with Gaussian noise

and SNR is equal to 40dB. An adaptive paraunitary filter of

order 6 is used. Sample Signal to Distortion Ratio (SDR) con-

vergence curves and constellations after the convergence (for

one randomly selected output) for the algorithms presented in

the previous section are shown in Figure 1. We used a win-

dow length of 10000 for Figure 1. SDR curves as a function

of available data window size are shown in Figure 2. Ac-

cording to this figure, the proposed approach is successful for

all three algorithms. We also note that MB-BSS can achieve

higher SNR levels even for short data bursts which can be at-

tributed to the exploitation of the magnitude structure of input

signals.
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Fig. 2. The achieved SDR levels versus Window Sizes.

5. CONCLUSION

The proposed adaptive paraunitary approach enables the ex-

tension of instantaneous BSS approaches to handle convolu-

tive BSS problems. The example provided in the previous

section illustrates the successful use of this approach for three

different BSS approaches.
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