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ABSTRACT

Time complexity is a challenge for learning machines. In this
paper, a fast training and efficient linear learning machine is
presented. Starting from a simple linear classifier, a new one
is proposed based on an improvement on the first one. The
machine obtained is characterized by a weight vector that can
be processed immediately without any complex calculus or
optimization step, which allows for considerable training time
savings. A geometric interpretation of the proposed method is
given. Experiments show that this classifier is competitive to
other state of the art linear learning methods such as Support
Vector Machines and Kernel Fisher Discriminant.

1. INTRODUCTION

In statistics, the problem of guessing or estimating a decision
function from a set of input-output pairs is called supervised
learning. The function is determined from a given training
set that contains n input-output pairs {(xi, yi)}n

i=1, where xi

are real vectors and yi are discrete scalars.
For supervised binary classification, the outputs or the la-

bels yi take generally the value −1 or +1. We then speak
respectively about positive and negative classes. The classi-
fication is made by using a real-valued function f so that a
pattern x ∈ Rd is assigned to the positive class , if f(x) ≥ 0,
otherwise it is assigned to the negative class.

Statisticians and neural network researchers have largely
used this simple kind of classifier, calling them respectively
linear discriminants and perceptrons. The theory of linear
discriminants was developed by Fisher in 1936 [1] [2], while
neural network researchers studied perceptrons in the early
1960s. Both consider the case where f(x) is a linear function
of x, so that it can be written as f(x) = 〈w, x〉 + b, where
(w, b) ∈ Rd × R are the parameters of the function and are
referred to as weight vector and bias, respectively. The in-
put space X is split into two parts by the hyperplane defined
by the equation f(x) = 0, each subspace corresponds to the
decision of a distinct class.

Research in linear classifiers has been recently revamped
by the popularity of kernel methods [3][4], a set of math-
ematical tools used to efficiently represent complex nonlin-
ear decision surfaces in terms of linear classifiers in a high-
dimensional feature space defined by kernel functions. Using
such methods, more efficient linear learning machines have
been developed such as SVM (Support Vector Machines) [5]
and KFD (Kernel Fisher Discriminant) [6].

Time complexity is one of the challenges of linear learn-
ing machines. Many suffer from a rapid growth of time com-
plexity with the growth of the number of training patterns. In
this paper, a fast training linear learning machine is proposed.
It uses kernel feature spaces yielding an efficient and highly
flexible classifier.

In the next section, a simple linear classifier is presented.
Then in section 3, the proposed method is developed by fur-
ther improvements and new contributions to the formulation
of the earlier one. The validity of these contributions is then
verified by geometric interpretations. In section 4, experi-
ments are carried out in order to compare the proposed method
with other state of the art classifiers on different standard data
bases. Conclusions and perspectives are given in section 5.

2. A SIMPLE LINEAR CLASSIFIER

In [4], authors have presented a simple linear classifier. The
basic idea is to assign a new pattern to the class with closer
mean. The means of the two classes are estimated from train-
ing samples, they are denoted c+ =

∑
{yi=+1}

xi

m+
and c− =∑

{yi=−1}
xi

m−
for classes with positive and negative labelled

samples respectively, where m+ and m− are the number of
positive and negative labelled training patterns. Half way be-
tween c+ and c− lies the point c = (c+ + c−)/2. The class
of an input x is determined by comparing the absolute angle
between the vector x− c and the vector w = c+ − c− to π/2.
This leads to the output of the classifier :

f(x) = sign (〈x − c, w〉)
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= sign
( ∑

{i,yi=+1}

〈x, xi〉
m+

−
∑

{i,yi=−1}

〈x, xi〉
m−

+ b
)
,

with b = 1
2 (‖c−‖2 − ‖c+‖2). Other values of the bias may

lead to better performances.
In general, real world applications require discriminant

functions that are more complex than linear ones. Kernel rep-
resentations offer a solution by projecting the data from X
into a high dimensional feature space F = {φ(x)|x ∈ X}.
The mapping φ(.) is performed by a kernel function Kθ(., .)
depending on a set of parameters θ, such that Kθ(x, y) =
〈φθ(x), φθ(y)〉 defines the dot product in that space. The ker-
nels having these properties satisfy the Mercer’s conditions
[5]. Using such kernels, the decision rule of the previous clas-
sifier can be expressed as :

∑
{i,yi=+1}

Kθ(x, xi)
m+

−
∑

{i,yi=−1}

Kθ(x, xi)
m−

+ b
D+

≷
D−

0, (1)

where D+ and D− are the decisions to affect a pattern to the
positive and negative class, respectively.

3. THE PROPOSED METHOD

3.1. Description of the method

Assuming that :

• Kθ is a probability density i.e., it is positive and has
unit integral:

∫
X

Kθ(x, y)dx = 1 for all y ∈ X .

• the conditional probability density of each classes (+ or
-) is estimated by the Parzen windows estimator :

p̂±(x) ∼
∑

{i,yi=±1}

Kθ(x, xi)
m±

• b = 0.

Thus equation (1) takes the form :

p̂−(x)
p̂+(x)

D−
≷
D+

λ, (2)

with λ = 1, which corresponds to a likelihood ratio based
classifier. Varying the decision threshold λ in [0, +∞[, (2)
may embrace a large scope of likelihood ratio based decision
rules (Bayes rule, Neyman-Pearson test, Mini-Max test).

Using a parameter ρ ∈ [0, 1[, decision rule (2) with λ ∈
[0, +∞[ becomes :

p̂−(x)
p̂+(x)

D−
≷
D+

ρ

1 − ρ
, (3)

which gives the decision rule :

ρp̂+(x) − (1 − ρ)p̂−(x)
D+

≷
D−

0.

This corresponds to a linear classifier in the feature space
without bias (b = 0) and the following weight vector :

wθ = ρ
∑

{i,yi=+1}

φθ(xi)
m+

− (1 − ρ)
∑

{i,yi=−1}

φθ(xi)
m−

= ρC+ − (1 − ρ)C−, (4)

where C+ and C− are the class means in the feature space.

3.2. The decision rule

The decision rule (4) corresponds to a linear classifier without
bias. Generally, for linear classifiers, the bias is one of the
classifier parameters that must be optimized in order to obtain
high performances. Considering a bias in (4) leads to :

ρp̂+(x) − (1 − ρ)p̂−(x) + b
D+

≷
D−

0 ⇔

p̂−(x)
p̂+(x)

D−
≷
D+

ρ

1 − ρ
+

b

(1 − ρ)p̂+(x)
⇔

p̂−(x)
p̂+(x)

D−
≷
D+

ρ

1 − ρ
+ δ(x). (5)

Equation (5) is a likelihood ratio based decision rule, whe-
re the probability densities are estimated by Parzen windows
estimators. The decision threshold consists of a constant term
that is defined through the parameter ρ, and a variable term
δ(x) that depends on ρ, the bias b and the pattern considered.

The result obtained is interesting because δ(x) can be in-
terpreted as a correction term to the decision rule (2). Once
the probability density functions are estimated by choosing
the convenient kernel function Kθ, the decision thre- shold
giving the best performance is defined through the parameter
ρ, then the bias b is chosen to give the best average correction
to the decision threshold. Note that because the estimation
error of the likelihood ratio p̂−(x)/p̂+(x) is a function of the
pattern x, the correction of the decision threshold must also
be a function of pattern x.

Decision rule (5) can be reformulated as :

ρ
[
p̂+(x) + b

]
− (1 − ρ)

[
p̂−(x) − b

] D+

≷
D−

0 ⇔

p̂−(x) − b

p̂+(x) + b

D−
≷
D+

ρ

1 − ρ
.

In this case, the bias modifies the discriminant function rather
than the decision threshold. It can be considered as an off-
set for the two estimated probability density functions, which
gives a correction to the estimated likelihood ratio. For dif-
ferent patterns x, this correction is not the same. Using this
formulation or that of (5), the bias b appears to provide deci-
sion rule (3) with a correction of the estimation errors.

Figure 1 shows the separation boundaries (dash-dot line
and solid line) obtained on a toy data, by using (3) and (5),
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Fig. 1. Separation boundaries obtained by (3)(dash-dot) and
(5)(solid) for a small training set (30 samples per class).

respectively. The data consists of two classes. One has a
uniform disc probability density function, and the other one
has a noisy bow probability density function, situated on the
top edge of the first one. The RBF kernel is used :

Kσ(x, y) = exp
(−σ‖x − y‖2

)
. (6)

The boundary obtained by (5) is smoother and discriminates
the two classes in an almost optimal way. This example shows
the beneficial effect of δ(x) in (5) on the correction of the de-
cision rule (3) to get a better classifier. Note that the training
set is small (30 samples per class). The optimal parameters
of the two classifiers are σ = 5 (kernel function width (6))
for (3), σ = 0.1 and ρ = 0.7 for (5). These parameters were
optimized on a separate validation set to give minimum error
using a grid of parameters. It is to be noticed that these two
classifiers do not have the same value σ, which means that the
classifier (5) is not only the extension of (2) to the case with
bias, but also defines a different classifier.

3.3. Geometric interpretation

The family of classifiers defined by (1) is included in the pro-
posed more general family of classifiers defined by (5). Not
taking into consideration parameter estimation problem, this
category of classifiers achieves better performances. The esti-
mated hyperplane separating the two classes is perpendicular
to the weight vector wθ whose direction varies from −C− to
C+ when varying the value of the parameter ρ from 0 to 1, as
illustrated in figure 2. The position of this hyperplane in wθ’s
direction is set by the value of the bias b.

Figure 3 shows on a two dimensional case, the influence
of parameter ρ on the determination of the separating hyper-
plane. The hyperplane 〈wθ, φθ(x)〉 + b = 0 given by (1)
clearly gives poor separation. The best separating hyperplane
in the sense of minimum error 〈w′

θ, φθ(x)〉 + b′ = 0 is a
member of the family of hyperplanes given by (5), it can
be obtained by rotation of the first hyperplane (rotation an-
gle ω in figure 3) and a suitable value of b. Note that for

c
+

c
−

w = c
+
−c

−

w’ = 1/2(c
+
−c

−
), ρ = 1/2 

w’ = c
+
, ρ = 1 

w’ = −c
−
, ρ = 0 

0

Fig. 2. Varying the variable ρ from 0 to 1, makes the weight
vector w′ varying from −c− to c+.

bi-dimensional classification problems such as the one of fig-
ure 3, the weight vector of the best separating hyperplane is
obviously in the plane defined by (C+, C−) except if these
two vectors are collinear. This is not necessarily true for
higher dimensional problems, in such cases the best separat-
ing hyperplane may not be member of the family of hyper-
planes defined by (5).

Special attention as to the choice of the kernel function
Kθ is necessary to verify that the two centers C+ and C− are
not collinear. If they are, the rotation of the weight vector wθ

in (4) will not be possible.

3.4. The case of a RBF kernel

In the case of a RBF kernel (6), since Kσ(x, x) = 1 for all pat-
terns x, all the vectors φσ(xi) in the feature space are located
on a unit radius hyper-sphere: ‖φσ(xi)‖ = 1,∀i. Further-

more, for all patterns x and y: 0 ≤ ̂φσ(x)φσ(y) < +π/2
because 0 < Kσ(x, y) ≤ 1. This means that all data in fea-
ture space are located on a surface delimited by a solid angle
of π/2. So, the two centers can be collinear only in the case
where C+ = C−, a situation that is extremely improbable.

4. EXPERIMENTS

In order to evaluate the performance of the proposed me-
thod, we compared it to other state of the art classifiers : Ker-
nel Fisher Discriminant, regularized AdaBoost and Support
Vector Machines [6][7]. We used 13 artificial and real world
data sets from the UCI, DELVE and STATLOG benchmark
repositories (except for banana) [7]: banana, breast can-
cer, diabetis, german, heart, image, ringnorm, flare solar,
splice, thyroid, titanic, twonorm and waveform. Some of
these problems are originally not binary classification ones,
hence a random partition into two classes is used. For each
data sets 100 pairs of test and training sets were created. The
proposed method was trained and tested on each of these set
pairs.

For each data base, the parameters (σ, ρ, b) of the pro-
posed classifier were optimized on the first five pairs of train-
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Fig. 3. The best separating hyperplane may be obtained by
rotation of the one of (1).

ing and test sets using a grid of values for σ and ρ. For each
pair of sets the classifier was trained with each couple of val-
ues (σ, ρ) and then we searched the value of b by minimizing
the average of the five validation errors obtained with the first
five test sets (each one with its corresponding training set).
Finally, the model parameters σ, ρ and b are chosen to mini-
mize the average error rate with the first five pairs of test sets.
The results obtained are summarized on table 1. The values
on the table represent mean and standard-deviation of the test
errors for each data using our method (METH.). Results for
other methods are found in [6].

The results show that the proposed method is competi-
tive and in some cases even better than the other methods on
almost all data sets except for diabetis and splice. Consider-
ing these results and despite the fact that the best solution for
high dimensional classification problems may not have been
obtained using (5), for such cases by choosing adequate map-
ping φθ, we suggest that the best possible solution can be ap-
proximated.

It should be noticed that almost all the data bases for which
the proposed method is better, KFD comes second except for
titanic. It may be due to the fact that KFD like the proposed
method has no support vectors. Both use all training patterns
in the formulation of decision function. In addition, the train-
ing of the coefficients of the weight vector of the proposed
classifier is immediate whatever the size of the training set; a
feature giving an advantage missing in other methods.

5. CONCLUSION

In this paper, a new linear learning machine has been pro-
posed. This classifier uses kernel feature spaces which yield
a highly flexible algorithm : this is competitive with other
kernel based algorithms. The expression of the weight vector
is a weighted combination of the means of the two classes.
Consequently its training is immediate whatever is the size of
the training set, contrary to other algorithms such as SVM for
which the training time complexity is O(n2), where n is the
number of the training patterns.

| ABR | SVM | KFD | METH. |
Banana |10.9 ± 0.4| 11.5 ± 0.7 | 10.8 ± 0.5 |10.8 ± 0.4|
B.Cancer |26.5 ± 2.3| 26.0 ± 4.7 | 25.8 ± 4.6 |24.8 ± 4.2|
Diabetes |23.8 ± 1.8| 23.5 ± 1.7 |23.2 ± 1.6| 26.2 ± 2.4 |
German |24.3 ± 2.1|23.6 ± 2.1| 23.7 ± 2.2 | 23.9 ± 2.4 |
Heart |16.5 ± 3.5|16.0 ± 3.3| 16.1 ± 3.4 | 16.9 ± 3.8 |
Image |2.7 ± 0.6 | 3.0 ± 0.6 | 4.8 ± 0.6 | 4.6 ± 0.7 |
Ringnorm| 1.6 ± 0.1 | 1.7 ± 0.1 | 1.5 ± 0.1 | 1.4 ± 0.0 |
F.Solar |34.2 ± 2.2|32.4 ± 1.8| 33.2 ± 1.7 | 33.9 ± 1.8 |
Splice |9.5 ± 0.7 | 10.9 ± 0.7 | 10.5 ± 0.6 | 12.8 ± 1.0 |
Thyroid | 4.6 ± 2.2 | 4.8 ± 2.2 | 4.2 ± 2.1 | 3.9 ± 2.0 |
Titanic |22.6 ± 1.2| 22.4 ± 1.0 | 23.2 ± 2.0 |21.8 ± 1.1|
Twonorm | 2.7 ± 0.2 | 3.0 ± 0.2 | 2.6 ± 0.2 | 2.4 ± 0.1 |
Waveform|9.8 ± 0.8 | 9.9 ± 0.4 | 9.9 ± 0.4 | 10.9 ± 0.8 |

Table 1. Comparison between the proposed method, KFD,
SVM and ABR (see text). Best results are in bold face and
underlined.

However while the space complexity of SVM scales with
the number of support vectors, the complexity of the proposed
method is O(n) depending on the number of training patterns
because all of them are used in the formulation of the decision
function. Future work will focus on the space complexity re-
duction of the proposed method.
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[6] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R.
Müller, “Fisher discriminant analysis with kernels,” Neu-
ral Networks for Signal Processing, vol. IX, pp. 41–48,
1999.
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