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ABSTRACT

Although Stochastic Context-Free Grammars appear promising for
recognition of radar emitters, and for estimation of their respec-
tive level of threat in Radar Electronic Support systems, well-known
techniques for learning their production rule probabilities are com-
putationally demanding. In this paper, three fast incremental alterna-
tives, called Graphical EM (gEM), Tree Scanning (TS), and HOLA,
are compared from several perspectives – perplexity, generalization
error, time and space complexity, and convergence time. Estimation
of the execution time and storage requirements allows for the assess-
ment of complexity, while computer simulation using a radar pulse
data set allows to asses the other performance measures. Results in-
dicate that gEM and TS may provide a greater level of accuracy than
HOLA, and that computational complexity may be orders of mag-
nitude lower with HOLA. Furthermore, HOLA is an on-line tech-
nique that allows for incremental learning of probabilities to reflect
changes in operational environments.

1. INTRODUCTION

Radar Electronic Support (ES) involves the passive search for, in-
terception, location, analysis and identification of radiated electro-
magnetic energy for military purposes. ES thereby provides valu-
able information for real-time situation awareness, for threat detec-
tion, for threat avoidance, and for timely deployment of counter-
measures [2] [10]. Two critical functions of radar ESM are the recog-
nition of radar emitters associated with intercepted pulse trains, and
the estimation of the instantaneous level of threat posed by these
radars. The recent proliferation and complexity of electromagnetic
signals encountered in modern environments is greatly complicating
these functions.

In conventional ES systems, radar signals are typically recog-
nized using temporal periodicities within the pulse train in conjunc-
tion with histograms of the pulses in some parametric space, e.g.,
carrier frequency, pulse repetition frequency, and pulse width. With
the advent of automatic electronic switching designed to optimize
radar performance, modern radars, and especially multi-function ra-
dars (MFR), are usually far too complex to be simply recognized
in this way. MFR will continuously and autonomously change their
transmitted signals in response to various events in their dynamically-
changing environment. In order to exploit the dynamic nature of
many modern radar systems, advanced signal processing algorithms
based on Stochastic Context Free Grammars (SCFGs) have been
proposed for modeling the behavior of radar systems [9] [8]. Such
models can allow tracking the dynamic behaviour of radar emitter
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patterns, which can be exploited for recognition of radar emitters,
and for estimation their respective level of threat.

Given prior knowledge of a radar’s behavior, and a set of train-
ing sequences collected in the field, one challenge to the practical
application of SCFGs is the task of learning probability distributions
associated with the production rules. The most popular technique
for learning the production rule probabilities is the Inside-Outside
(IO) [1] [5]. Unfortunately, application of this algorithm to real-
world tasks is limited due to the time and memory complexity per
iteration, and to the large number of iterations needed to converge.
For each iteration, IO has a time complexity which is cubic with the
length of sequences in the training set, and cubic with the number of
non terminal symbols in the grammar. Moreover, these techniques
cannot incrementally learn new information that may emerge as the
operational environment evolves.

In this paper, three fast incremental alternatives to the IO tech-
nique – Graphical EM (gEM) [7], Tree Scanning (TS), and HOLA [6]
– are compared. Unlike IO, these algorithms involve pre-computing
data structures, such as Earley charts, histograms, support graphs,
etc., and can thereby lead to a significant reduction in time complex-
ity per iteration. In addition, these algorithms are suitable for learn-
ing new information incrementally, without re-training from the start
using all training data. Given the need for a learning procedure that
offers both accurate results and computational efficiency, the perfor-
mance of these techniques is examined from several perspectives –
perplexity, estimation error, convergence time, time complexity, and
space complexity. The data set used in our simulations describes
electromagnetic pulses transmitted from a MFR system. The out-
come of numerous computer simulations are combined to yield an
average performance measure.

The rest of this paper is structured into four sections as follows.
The next section provides some background information on gram-
matical modeling in the context of radar ES applications. In Sec-
tion 3, the main features of the Graphical EM, Tree Scanning, and
HOLA techniques are outlined. Then, the methodology used to com-
pare these techniques, namely, the experimental protocol, data sets,
performance measures, is described in Section 4. Finally, the results
of computer simulations and complexity estimates are presented and
discussed in Section 5.

2. GRAMMATICAL MODELING IN RADAR
ELECTRONIC SUPPORT

In radar ES applications, pulsed radar signals are generated by a
MFR in reaction to its current operating environment. For instance,
when a radar detects or abandons targets it switches among its search,
acquisition and tracking functions. The algorithm controlling the
function of a MFR is designed according to stochastic automata prin-
ciples, and the state transitions within the automata are driven by the
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stochastic behavior of the targets [8]. The signals generated by a
MFR may be viewed with two levels of data organization – the pulse
level and the word level. Radar words can be defined as static or
dynamically-varying groups of pulses that a MFR emits in different
states. A sequence of several words may form a phrase, which cor-
responds to a state of the radar. The number of words per phrase,
their structure, etc., varies according to the MFR.

A deterministic formal language ζ corresponds the set of all
possible sequences over the symbols of a vocabulary. Grammati-
cal modeling of a radar system’s behavior is achieved if one assumes
that symbols of a vocabulary correspond to words of a specific MFR,
and that a language represents all possible combination of sequences
that a radar could ever emit, from power-up to shutdown. Then, one
can create a finite set of production rules to describe a particular lan-
guage associated with a complex radar system [9] [8].

At a word level, most MFR systems of interest have a natural and
compact description in terms of a type of grammar called Context-
Free Grammars (CFG) [4]. A CFG G is a mathematical construction
represented by the quadruplet G = {V, N, R, ε}. It consists of a set
of terminals symbols (i.e., vocabulary) V , a set of nonterminals sym-
bols N , a set of context-free production rules R, and a start symbol
ε ∈ N . A language generated by a grammar is a set of sequences of
terminals that can be derived from ε by applying the R. A context-
free production rule has the form A → Γ. The left-hand-side must
be a single non-terminal A ∈ N and the right-hand-side may con-
sist of any sequence of terminals and nonterminals. Therefore, a
CFG allows to model long term dependencies established between
the different words of a MFR sequence.

Given the behavior of MFRs and the imperfections of signals
observed on a battlefield, it is not possible to design a robust deter-
ministic CFG to model the behavior of a radar system. To allows
for a robust modeling of the signal degradations, noise and uncer-
tainties, an element of stochasticity is introduced into the definition
of grammars by assigning probability distributions to the produc-
tion rules. In Stochastic Context-Free Grammars (SCFGs) [4] ev-
ery production for a non-terminal A has an associated probability
value such that a probability distribution exists over the set of pro-
ductions for A. Therefore, a SCFG Gs is defined as a pair (G, π)
where G is a CFG and π = (πA1

, πA2
, ..., πAr

) is a vector whose
component πAi

represents the distribution of probabilities of a non-
terminal Ai being derived in a combination of symbols λ. Assum-
ing that P (λ|Ai) is the probability of Ai producing λ, then πAi

=
(P (λ|Ai), P (µ|Ai), ..., P (σ|Ai)), where 0 ≤ P (λ|Ai) ≤ 1 for λ,
and

∑
λ P (λ|Ai) = 1.

3. A SURVEY OF FAST TECHNIQUES FOR LEARNING
PRODUCTION RULE PROBABILITIES

The problem of learning production rule probabilities of a SCFG
from a finite set of training sequences Ω can be formulated as an op-
timization problem. Given a SCFG Gs, and any set Ω of sequences
drawn from ζ(G) (allowing for repetitions), one approach for esti-
mating the probabilities of the grammar consists in maximizing the
likelihood of Ω, P (Ω, ∆Ω|Gs) =

∏
x∈Ω P (x, ∆x|Gs), where x is

a sequence of Ω, and ∆Ω represents the set of the derivation trees
∆x considered to form x [1].

The Expectation-Minimization (EM) algorithm called Inside-
Outside (IO) [1] [5] is a well-known technique for learning the pro-
duction rule probabilities. IO re-estimates probabilities of rules in an
iterative manner such that the likelihood of Ω is maximized. How-
ever, the IO algorithm has a time complexity of O(M3

ntL
3) per it-

eration and a space complexity of O(MntL
2), where Mnt is the

number of non terminals in a grammar and L the length of an input
sequence. Application to real-world problems is therefore limited.
Moreover, it is not possible to update production rule probabilities
incrementally in order to reflect changes in the environment.

To accelerate IO, some authors have proposed alternate EM al-
gorithms that incorporate chart parsing within a pre-processing phase.

Re-estimation of probabilities can be significantly faster since the
blind combination of rules, where any non terminal symbol could
produce any combination of non terminals, is avoided. Among these
authors, Sato and Kameya [7] have recently introduced an algorithm
called the graphical EM (gEM) that completely separates the EM
learning process from the parsing of Ω. During pre-processing, this
algorithm creates a set of ordered support graphs from the chart of
a CYK or Earley parser, to represent only the derivations that may
possibly lead to a sequence. When probabilities are re-estimated,
gEM only passes by the transitions described in support graphs.

Along the same lines as gEM, pre-processing with the Tree Scan-
ning (TS) algorithm consists in creating the chart for each training
sequence using a CYK or Earley parser. This chart is then used to
extract all the possible derivation trees producing a sequence. Prob-
ability re-estimation is performed by computing the total likelihood
of the sequence (i.e., multiplying of the associated probabilities), and
by extracting frequencies (i.e., counting the production rules). This
algorithm applies to cases (such as ES applications) in which gram-
mars are not very ambiguous. The authors could not find it in the
literature. Note that both gEM and TS give the same results as IO.

Oates and Heeringa [6] present a heuristic on-line algorithm
called HOLA based on summary statistics. During pre-processing,
HOLA exploits a chart parser to computes summary statistics – the
distributions over the rules found after parsing Ω, and after parsing
a set of sequences produced by the grammar. Then, during the itera-
tive process, HOLA re-estimates probabilities of rules in an iterative
manner, using a gradient descent approach, such the relative entropy
between these two distributions is maximized.

gEM, TS and HOLA each involve pre-computing data struc-
tures, such as charts, histograms, support graphs, etc., and can thereby
lead to a significant reduction in time complexity per iteration, at the
expense of space complexity. In addition, these algorithms are suit-
able of learning new information incrementally. HOLA is fully in-
cremental since a new training set Ω′ can refine probabilities without
retraining the start using Ω + Ω′. gEM and TS are however semi-
incremental. Although new set Ω′ can be incrementally incorporated
into their data structures during pre-precessing, the iterative process
must re-estimates new probabilities from scratch, using Ω + Ω′.

4. EXPERIMENTAL METHODOLOGY

In order to characterize the performance of the three techniques pre-
sented in Section 3, a fictitious MFR system called Mercury was
considered. The Mercury MFR can be in one of five functional states
– Search (S), Acquisition (Acq), Non-Adaptive Track (Na), Range
Resolution (Rr), and Track Maintenance (Tm). If the radar is in
Search, it can remain there, or move to the Acquisition once a target
is detected. The target acquisition cycle involves transitions from
Acquisition, to Non-Adaptive Track, to Range Resolutions, and fi-
nally to Track Maintenance. The radar can remain in any of these
states for an unspecified length of time. Finally, the target acquisi-
tion or track can be abandoned at any point, at which time the radar
returns to Search. A word-level CFG was designed for this MFR
from its functional description, according to the Chomsky Normal
Form. Mercury represents a low ambiguous grammar.

The transition probabilities needed from a SCFG were learned
according to gEM, TS and HOLA techniques through computer sim-
ulation with a synthetic radar data set. A data set was generated for
Mercury. It consisted of 400 sequences, where each sequence cor-
responds to the set of words that would be produced by this MFR
during one target detection, while switching through all its internal
states, starting and ending in Search mode. Mercury sequences had
a size that ranged from 108 to 1540 words, with an average of 588
words. The duration of each state is set using gaussian distributions
to approximate reality.

Prior to simulation trials, this data set was partitioned into four
equal parts a training subset Train, a validation subset Val, a test
subset Test, and an ideal test subset TI. Inside an ES system, the
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MFRs words would first be detected from within the stream of inter-
cepted radar pulses, and then sequences of words would be recog-
nized using the SCFGs. Prior to sequence recognition, errors occur
if (1) a word is incorrectly detected, (2) a word is missing or not de-
tected, or (3) multiple words are detected simultaneously. If only the
best-matching detection is retained for sequence recognition, these
3 cases are equivalent to incorrectly detected words (case 1). Ac-
cordingly, two noisy versions of TI, TN1 and TN2, were generated.
Each noisy test set consists of the 100 sequences from TI. Then, to
select incorrectly detected words to be modified, a Poisson process
was applied with a mean of 50 words for TN1 and 10 words for TN2.
Finally, a uniform law was used to determine the replacement words.

During each trial, the prior probabilities of a SCFG were ini-
tialized, and then training was performed over several iterations of
Train, until the difference between the negative log likelihoods
(gEM and TS) or relative entropy of words (HOLA)1 of sequences
on Val was lower than 0.001 for two successive iterations (the hold-
out strategy). In order to assess the effect on performance of Train
size, the number of sequences from Train that were used during
learning was progressively increased from 25 to 100 sequences, by
increments of 25, while Val, Test, TI, TN1 and TN2 were held
fixed. At the end of each trial, SCFG probabilities associated with
the minima of the negative log likelihoods (gEM and TS), or of the
relative entropy of words (HOLA) on Val were stored.

Each independent trial was replicated 10 different times, with
production rule probabilities initialized in 10 different ways – one in
a uniform way, and the others in a random way. Test was then used
to assess performance and select, for each technique, the best set of
SCFG production rule probabilities among the different probability
initializations. Finally, the performance on TI, TN1 and TN2 was
measured with the best set of SCFG probabilities.

The performance of techniques was compared in terms of the
amount of resources required during training, and the accuracy of
results on the test sets. The accuracy of SCFG produced using gEM,
TS and HOLA were assessed in terms of the perplexity, and the es-
timation error on radar states. In contrast, the amount of resources
required to implement these techniques is measured using the time
and space complexity and the convergence time. Estimation of the
execution time and storage requirements allows for the assessment
of complexity, while computer simulation using the Mercury data set
allows to asses the other performance measures.

Perplexity (PP) is measured with PP = 2−
1

n
log2 P (wn

1
) where

P (wn
1 ), is the probability of the sequence {w1 . . . wn} being pro-

duced by a language [3]. Perplexity can be interpreted as the num-
ber of words that the model has to choose from to complete a given
sequence. It is based on information theory, and is independent of
sequence length. The closer this value is to 1, the more a model can
predict the language. Estimation error on states is estimated by the
ratio of incorrectly estimated states over all occurrences of the states
in the tests.

Time complexity can be estimated analytically from the time re-
quired during one iteration, to re-estimate production rule probabili-
ties of a SCFG from a single training sequence. The result is a total
average-case or worst-case running time formula, T , which sum-
marizes the behavior of an algorithm as a function of key parame-
ters. For simplicity, time complexity is estimated as a sum of the
number of multiplications and divisions. The average-case is es-
timated by introducing the stochastic parameters, while the growth
rate is obtained by making the parameters of the worst-case com-
plexity tend to ∞. Space complexity S is estimated as the num-
ber of 8 bit registers needed during learning process to store vari-
ables. Only the average-case memory space required during pre-
processing phase was considered. (The temporary memory space
required during the iterative processes was neglected.) For gEM,
one branch of a support graph consists in 3 vectors of 3 registers
([A, B, C]; [B, i, k]; [C, k, j], which means that the non-terminal A
is expanded by BC to produce the subsequence {wi...wj}), or 2

1For HOLA, a maximum number of 100 iterations was also set.

vectors of 2 and 3 registers ([A, a]; [a, i, i + 1], which means that A
is expanded by a to produce wi). With TS, a production rule consists
only in a vector of 2 or 3 registers ([A, a] or [A, B, C] for emission
or transition rules). With HOLA only one register is needed for each
rule (to representing its frequency).

Finally, convergence time is measured by counting the number
of iteration I of Train needed for learning to end. This measure is
independent from time complexity, since an algorithm may require
several iterations to converge using very simple processing, or vice-
versa. The overall time complexity associated with a learning tech-
nique is Ttot = Tinit(|Ω|) + I ·T · |Ω|, where Tinit(|Ω|) is the time
required during preprocessing to produce data structure. The prod-
uct of I and T provides useful insight into the amount of processing
required by technique to produce its best asymptotic performance.

5. RESULTS AND DISCUSSION

Figure 1 shows the average perplexity of the best parse trees and
number of iterations achieved by the gEM, TS and HOLA tech-
niques on Test, as a function of Train size. An average perplex-
ity of about 1.9 is obtained when learning with TS, of just below 2.0
with gEM, and of about 3.0 with HOLA. This level of performance
is attained when gEM and TS use a Train of 50 sequences, and
when HOLA uses a Train of 25 sequences. In those specific cases,
gEM and TS require on average about 4 iterations to converge, while
HOLA requires on average about 80 iterations to converge.

(a) Perplexity (b) Number of iterations
Fig. 1. Average perplexity of the best parse trees for the gEM, TS
and HOLA techniques versus Train size, for the Mercury MFR.
(Error bars are standard error of the sample mean.)

In practice, the SCFG that yields lowest perplexity for the small-
est amount of resources would be selected. The set of SCFG prob-
abilities corresponding to the lowest perplexity across the 10 ini-
tializations, when Train size is 50 (best ratio PP/resources), were
selected for gEM, TS, and HOLA. Table 1 shows the perplexity ob-
tained on TI, TN1, and TN2 test sets. Although perplexity tends to
grow with the level of noise for all three techniques, the perplexity
obtained with gEM and TS is always lower than with HOLA. The
confusion matrix for the same case is shown in Table 2. This ta-
ble presents the estimation errors for the SCFGs obtained with gEM,
TS and HOLA for each state of the Mercury MFR. Although the
SCFG obtained with HOLA usually produced the greater number
of estimation errors, all SCFGs behave consistently. When TI is
processed, the only estimation error occurs when Na is estimated in-
stead of Acq. However, the ability of SCFGs to estimate radar states
degraded with noisy data.

Test subset gEM TS HOLA
TI 1.8103 1.8285 2.4899
TN1 3.1271 3.1784 4.0492
TN2 9.8086 10.187 12.972

Table 1. Perplexity on TI, TN1, and TN2 for SCFGs obtained with
gEM, TS and HOLA.

Tables 3 and 4 give the average time and space complexities,
and corresponding growth rate, associated with IO, gEM, TS and
HOLA. For IO, the average and worst-case time and space complex-
ities are fixed, regardless of SCFG. In contrast, the average complex-
ities for gEM, TS and HOLA differ considerably from the worst-
case. For instance, the time and space complexities for gEM and
TS grow exponentially with the inherent ambiguity of the SCFG.
With HOLA, these complexities grow linearly with the number of
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Estimated States
S Acq Na Rr Tm

TI/TN1/TN2 TI/TN1/TN2 TI/TN1/TN2 TI/TN1/TN2 TI/TN1/TN2
gEM 4178 / 3500 / 2433 0 / 107 / 343 0 / 150 / 164 0 / 18 / 110 0 / 66 / 341

S TS 4178 / 3440 / 2399 0 / 109 / 359 0 / 173 / 157 0 / 35 / 96 0 / 66 / 312
HOLA 4178 / 3380 / 2052 0 / 134 / 377 0 / 161 / 255 0 / 37 / 217 0 / 146 / 569
gEM 0 / 10 / 22 1734 / 1530 / 1044 235 / 345 / 32 0 / 7 / 66 0 / 0 / 85

Acq TS 0 / 9 / 18 1734 / 1527 / 1027 235 / 333 / 347 0 / 6 / 89 0 / 11 / 64
HOLA 0 / 3 / 35 1734 / 1452 / 800 235 / 355 / 281 0 / 25 / 92 0 / 52 / 213
gEM 0 / 0 / 0 0 / 8 / 7 736 / 613 / 412 0 / 77 / 212 0 / 0 / 34

Na TS 0 / 0 / 0 0 / 8 / 5 736 / 613 / 411 0 / 78 / 213 0 / 0 / 33
HOLA 0 / 0 / 9 0 / 11 / 8 736 / 571 / 315 0 / 71 / 167 0 / 47 / 135
gEM 0 / 31 / 21 0 / 0 / 16 0 / 51 / 122 2073 / 1852 / 1267 0 / 55 / 288

Rr TS 0 / 31 / 25 0 / 0 / 14 0 / 64 117/ 2073 / 1835 / 1256 0 / 54 / 309
HOLA 0 / 31 / 66 0 / 0 / 17 0 / 39 / 165 2073 / 1783 / 958 0 / 115 / 403

R
ea

lS
ta

te
s

gEM 0 / 445 / 1196 0 / 68 / 118 0 / 364 / 523 0 / 74 / 179 6243 / 5389 / 4249
Tm TS 0 / 505 / 1236 0 / 69 / 119 0 / 316 / 511 0 / 74 / 175 6243 / 5376 / 4222

HOLA 0 / 552 / 1284 0 / 116 / 259 0 / 415 / 548 0 / 135 / 455 6243 / 5122 / 3716
1-Error rate gEM 1 / 0.838 / 0.582 1 / 0.882 / 0.602 0.758 / 0.631 / 0.424 1 / 0.893 / 0.611 1 / 0.863 / 0.68

per state TS 1 / 0.823 / 0.574 1 / 0.88 / 0.592 0.758 / 0.631 / 0.423 1 / 0.885 / 0.606 1 / 0.861 / 0.676
HOLA 1 / 0.809 / 0.491 1 / 0.837 / 0.461 0.758 / 0.588 / 0.324 1 / 0.86 / 0.462 1 / 0.82 / 0.595

Table 2. Confusion matrix on TI, TN1, and TN2 for SCFGs obtained with gEM, TS and HOLA.
SCFG rules. Overall, HOLA has the lowest time and space com-
plexity of the three. The others can have a very low time complexity
but require a substantial amount of memory to store data structures.
The time and space complexity associated with the SCFG model for
Mercury for the different algorithms are: THOLA = 196 < TTS =
7.32 ∗ 103 < TgEM = 8.24 ∗ 104 < TIO = 2.64 ∗ 1013 and
SHOLA = 392 < STS = 1.74 ∗ 107 < SIO = 3.49 ∗ 107 <
SgEM = 6.97 ∗ 107.

Methods Average-case Growth rate
IO 4

3
M3

ntL(L2 − 1) + (L2 + 1) O(M3
ntL

3)
+MntMt(L + 2) + 2M3

nt

gEM 6|∆le| + 9|ϕt||∆lt| O(M3
ntL

3)
TS |∆Tr||Tr| O(ML

ntL
3)

HOLA 2|r| O(M3
nt)

Table 3. Estimates of time complexity of learning techniques. In
this table, |r| is the number of rules of the grammar, L is the size
of a training sequence, Mt is the number of emission rules, |∆lt|
and |∆le| are the average numbers of sub-graphs in support graph
corresponding to transition and emission rules, |ϕt| is the average
number of branches per sub-graph corresponding to a transition rule,
|Tr| is the average number of trees leading to a sequence and |∆Tr|
is the average size of a tree, that is the average number of production
rules per tree.

Methods Average-case Growth rate
IO 2MntL

2 O(MntL
2)

gEM 3|ϕt||∆lt| O(M3
ntL

2)
+2|∆le| + 4MntL

2

TS |∆Tr||Tr| + MntL
2 O(ML

ntL
3)

HOLA 4|r| O(M3
nt)

Table 4. Estimates of space complexity of learning techniques.

6. CONCLUSION

Three fast incremental alternatives to the IO technique – gEM, TS,
and HOLA – have been compared for learning the production rule
probabilities of SCFGs, in order to recognize MFR systems and es-
timate their states in ES applications. Unlike IO, these techniques
rely on pre-computed data structures to accelerate the probability
re-estimation process, and are suitable for learning new information
incrementally, without re-training from the start using all training
data. Their performance has been measured in terms of resource
allocation and accuracy.

The selection of either technique would ultimately depend on the
specifics of the ES application, and effect a tradeoff between accu-
racy and computational efficiency. In computer simulations using a

synthetic radar data set, gEM and TS have provided a greater level of
accuracy than HOLA, yet converged after fewer training iterations.
Unless the MFR system is modeled by a very ambiguous SCFG,
these two techniques can learn probabilities rapidly, at the expense
of significantly memory resources. On the other hand, the execution
time and memory requirements of HOLA are orders of magnitude
lower than that of gEM and TS. Its complexity is bounded by the
number of SCFG rules, not the amount of training data. Further-
more, HOLA is an on-line technique that can update these proba-
bilities incrementally on the fly in order to reflect changes in the
environment.
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