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                                 ABSTRACT 

Most of the watermark (WM) decoding schemes use correlation-

based methods because of their simplicity. In these methods, the 

WM signal embedded through a secret key is assumed as uncorre-

lated with the host signal. This is a hard restriction that can never be 

achieved and correlation between the received signal and the secret 

key becomes greater than zero even though the received signal is 

un-watermarked. Mostly a decision threshold specified semi-

automatically is used at the decoding site. Since the audio water-

marking is a nonlinear process that guarantees the inaudibility, there 

is no analytic way of determining an optimal threshold value that 

makes the WM decoding problem harder. This paper introduces a 

learning scheme followed by a nonlinear classification thus elimi-

nates the threshold specification problem. The decoding process is 

modelled as a three-class classification problem and Support Vector 

Machines (SVMs) are used in the learning of the embedded data. 

The decoding and detection performances of the developed system 

are greater than 98% and 95%, respectively. When the Watermark-

to-Signal-Ratio (WSR) is higher than -30dB, system false alarm 

ratios remain less than 2%. It is shown that the introduced WM 

decoding method is robust to additive noise and most of add/remove 

and filter attacks of Stirmark.

1. INTRODUCTION

Recently, distribution of audio data in digital form became easier 

and more extensive, that makes the copyright protection much more 

difficult. Audio watermarking techniques are proposed to ensure the 

IP rights by embedding ownership information into the host data, 

while preserving originality. Accurate decoding of the embedded 

watermark (WM) information is a challenging problem in audio 

watermarking and many techniques have been proposed for this.  

In the literature, watermark decoding [1,2,3,4,5,6] and water-

mark detection are often considered as separate problems. In most 

of the decoding methods correlation-based decision rules are used 

because of their simplicity [1,2,3,4]. The lack of these systems is 

that, the WM decoding performance relies on the accuracy of the 

calculated correlation between watermarked and embedded key 

signals. Higher the correlation, lower the un-extracted WM data. On 

the other hand, there is a trade-off between the correlation and the 

audibility. Another difficulty with the correlation-based methods is 

that, they do not allow accurate identification of the watermarked 

and un-watermarked audio clips that is required in many applica-

tions, i.e., on-line broadcast monitoring and royalty tracking. 

In this paper, the WM decoding and detection problems are in-

tegrated into a unique classification problem and supervised learn-

ing of the embedded WM data is introduced. Due to the good learn-

ing capability, SVMs[7] are used in the training stage. In the litera-

ture, there are some preliminary works that use SVMs for image 

watermark decoding, i.e. it is used for logo detection where the in-

tensity level differences of the pixels’ blue components are used for 

the training of SVMs [5].  In our previous work [6], a binary SVM 

classifier is proposed for audio watermark decoding but not detec-

tion.

Unlike the existing methods, this paper proposes a learning- 

based audio watermark classification scheme which is capable of 

correctly extracting the WM bits while simultaneously detecting the 

un-watermarked audio frames. Test results demonstrate that per-

formance of the introduced integrated technique outperforms state-

of-the-art correlation-based techniques [2, 3, 4] and it is robust to 

noise attacks as well as several Stirmark [8] attacks.  

2. ADAPTIVE WATERMARK EMBEDDING 

An adaptive spread spectrum audio watermarking scheme [2, 3] that 

is compatible to MPEG Layer 3 Model 2 (mp3) audio compression 

standard is used for embedding the WM information. 

Let is  refer to the ith frame of the input audio signal. At each 

instant, the encoder takes an original audio frame, is , as its input 

and transmits the corresponding watermarked frame, 
WMis , over the 

communication channel. The watermarked audio frame is formu-

lated as in Eq.(1),

( , )
WMi i j i i j iw f ws s s k s k ,

                                        1, ..., ( )i LxRP , 1, ...,j L .          (1) 

where Refresh Period (RP) refers to the number of block insertions 

and  is a parameter that controls the power of the embedded wa-

termark. In Eq.(1), WM bit wj can be either +1 or -1 where j=1,…L
and L is the length of the watermark block. k refers to the secret key 

sequence with zero mean generated by a Pseudo Noise generator 

(PN). ( , )if s k  is a nonlinear function of  the input audio signal, is ,

and the secret key k that models the embedded data. Our encoder 

applies an iterative approach that allows specifying a nonlinear f(.) in 

a data adaptive way [2, 3]. In Eq.(1), j iw k models the nonlinear dis-

tortions, where ik is the shaped key signal that is embedded into the 

audio frame i, after multiplied by jw . The WM encoder generates 

ik  by shaping the secret key sequence k according to masking 

thresholds obtained by psychoacoustic masking of is . In [4], an ana-

lytic approach to analyze a linear f(.) is introduced. 

3. DIFFICULTIES WITH TRADITIONAL METHODS 

The traditional audio watermark decoding schemes mostly use 

correlation-based methods. In these methods, the watermark detec-

tion and decoding are often considered separately [1,2,3,4,5,6] and 

mostly decoding performance is declared. This is because of the 

difficulties in the specification of detection threshold. In the con-
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text of this paper, we make the distinction between WM detection 

and decoding. The term WM detection is used to denote the ability 

of the decoding algorithm to declare the presence or absence of a 

watermark on an audio. Whenever the algorithm declares the audio 

is watermarked, the embedded WM is decoded. This is important 

for the considered applications, i.e., broadcast monitoring, royalty 

tracking, etc. 

WM detection can be considered as a hypothesis testing prob-

lem, and the two hypotheses are being: 

H0: the audio under test does not host the watermark under in-

vestigation 

H1: the audio under test hosts the watermark under investiga-

tion

In spread spectrum watermarking, hypothesis H1 can be further 

divided into two sub-hypotheses: 

H1a : the audio under test is watermarked by +1 

H1b : the audio under test is watermarked by -1 

Eq.(2) defines the correlation function between the received 

audio frame, 
Ri i j iw=s s k r , and the secret key signal k, for ith

frame; 

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
R

N N N N

i i i j i
n n n n

c k n s n k n s n w k n k n k n r n  (2) 

Since k is a PN signal which should be un-correlated with is

and the additive channel noise r, in ideal case, 
1

0( ) ( )
N

i

n

k n s n

and
1

( ) ( ) 0

N

n

k n r n .               

In order to eliminate the noise we applied wavelet-denoising on 

the received signal, therefore the correlation is calculated as; 

1

( ) ( )
N

i i

n

c k n t n           (3) 

where 

-1
)

Ri h iW t  W(s              (4)

Detailed explanation of Eq.(4) is given in Section 4.   

Consequently, jw , the WM bit embedded into frame i can be 

estimated according to the decision rule given in Eq.(5): 

0,                       if  
( )

sgn( ),     if    
R

i

i

j i i

c thr
F

w c c thr
s                        (5)       

In Eq.(5), thr refers to the decision threshold that means; if the 

correlation value is less than thr, H0 is accepted; if it is greater than 

thr, H1 is accepted. If the watermark is detected, the sign of ci speci-

fies the embedded WM bit. Thus the decision highly depends on the 

threshold value. There is no analytical way to specify the optimal 

value of thr, therefore it is either taken as equal to zero or chosen 

heuristically. If thr is specified as equal to zero, the correlation-

based decoder will not be able to detect the un-watermarked audio 

frames. On the other hand, since there is a trade off between the 

correct decision probability and false alarm ratio, it is difficult to 

specify the threshold values heuristically. In order to minimize the 

false alarms, the value of thr is set to a small value that makes the 

detection of un-watermarked clips unfeasible. Furthermore, in prac-

tice, neither k and si, nor k and r can be chosen as uncorrelated, that 

also reduces the WM extraction accuracy of the decoder. In order to 

eliminate these fundamental problems of the existing correlation-

based audio WM decoders, in the next section, we introduce a 

SVM-based learning and classification method for audio WM de-

coding.

4. AUDIO WATERMARK DECODING BY SVMS 

In this paper, an integrated audio WM detection and decoding 

scheme that performs a SVM-based supervised learning followed by 

a blind decoding is introduced. The decoding process is modelled as 

a three-class classification procedure. Initially, wavelet decomposi-

tion is performed on the audio signals, and the decomposed audio 

frames watermarked with +1 and -1 constitute Class 1 and Class 2, 

respectively. The proposed method is not only capable of correctly 

decoding the embedded WM bits but is also capable of detecting un-

watermarked audio frames defined as Class 3.  

4.1. Extraction of Training Vectors 

The proposed decoding algorithm first performs wavelet decompo-

sition on the audio signals collected in the training data set. The idea 

behind using the wavelet decomposition is twofold: first, elimina-

tion of noise by wavelet denoising; second, reducing the computa-

tional complexity, because the embedded WM data are dominant in 

the high frequency components, thus in detail coefficients of the 

wavelet transformed signal [2].  

Let
WMis , the watermarked audio frame is first decomposed 

into approximation and detail parts by using the Daubechies-4  

wavelets: 

 = ,        1
WM WM WMi i i i = ,...,l s e dW         (6) 

where W denotes the wavelet transform, l is the number of the train-

ing vectors, 
WMie  and  

WMid  refer to the approximation and detail 

coefficients of the watermarked signal, respectively. Note that, for 

un-watermarked case, there is no WM information, so id  is the 

detail coefficients of the decomposed original signal is .

Let the feature vectors, it , i=1,..,l, constitute the N dimensional 

training vectors for the SVM classifier, where l refers to the number 

of training vectors. Then, ith training vector can be obtained by 

taking the inverse wavelet transform of the detail coefficients as 

described by Eq.(7): 
-1

-1

, 1 2

, 3

WMi

i

i

W for Class  and Class

W for Class

d      
t

d           

,  i=1,..,l                (7) 

where 
1

W  denotes the inverse Wavelet transform.  

4.2. Training the SVM for Three-Class Classification 

Due to the good learning capability, SVMs are used in the training 

stage. Originally, the SVM classifier is designed for binary classi-

fication [7]. Given a training set T={ 1 1( , ), ..., ( , )l ly yt t }, where 

N

i Rt  is an N-dimensional feature vector and { 1, 1}iy +  is a 

class label, the aim of the SVM training is to find an optimal hyper-

plane, 0ba t , where a is normal to the decision hyper-plane, 

2 / | |a  is the margin, and | | / || ||b a  is the perpendicular distance 

from the decision hyper-plane to the origin. The optimal SVM clas-

sifier that maximizes the margin is designed by maximizing the 

Wolfe dual [7] of the Lagrange functional given in Eq.(8), 

1 , 1

1
max ( ) max K( )

2

l l

i i j i j i j

i i j

W y y t t      (8) 
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subject to constraints 

          
1

0,

l

i
i iy 0

i
C , i = 1,…, l  ,         (9) 

where i  is the ith Lagrange multiplier corresponding to the ith

training vector. If the training set is not separable, deviations of the 

misclassified samples from the decision boundary is controlled by 

the misclassification cost parameter C where C defines an upper 

bound for the Lagrange multipliers, i , i = 1,…, l.

In this work, because of the nonlinear nature of the audio wa-

termark decoding problem, a nonlinear SVM classifier is designed 

by using a Gaussian Radial Basis Function (RBF) kernel. The Gaus-

sian RBF kernel is defined as 
2 2|| || / 2

( , )
i j

i jK e
t t

t t , where 

is the width of the RBF kernel [7].  

Since the considered problem is a M=3-class classification 

problem, the classification is achieved by transforming it into 

( 1) / 2M M  binary classification based on the one-against-one 

method [7]. Therefore, the training set T= 1 1( , ), ..., ( , )l ly yt t  is 

formed by assigning the class label { 1, 1, 0}iy  to each training 

vector ti, obtained by the wavelet decomposition of ith audio frame. 

For each class pair, the SVM classifier is trained with the training 

vectors coming from two corresponding classes. The hyper-plane 

parameters a and b, that determine the decision surface, and the 

support vectors ,s SVt  that correspond to 0s  where 

SV T  are obtained. 

In order to evaluate the classification performance tendency to 

selection of the training vectors, the training set T is formed in two 

different ways. In the first case, all of the training vectors are col-

lected from a single audio clip, and training of the SVM classifier is 

achieved where l is determined with the best adaptation between the 

classification accuracy and the computational complexity. In the 

second case, l / 10 training vectors are collected from 10 different 

audio files. It is observed that, performance of the introduced audio 

WM decoder does not rely on the selection of the training samples. 

4.3. Classification of the Audio Frames 

Let 1 , ..., uS t t  denote our test set where 
it , 1, ..., ,i u  is an 

N-dimensional  test vector. In order to obtain the test vector it , the 

received signal 
Ri

s is first decomposed into its detail 
Ri

d and ap-

proximation 
Ri

e  parts by applying wavelet transform. In order to 

eliminate channel noise, the detail coefficients of decomposed sig-

nal,
Ri

d , are thresholded before taking the inverse wavelet trans-

form as in Eq. (10);  

-1
 ,    1

Ri h iW i = ,...,u t  d           (10) 

where h  refers to the thresholding operation thus eliminates the 

coefficients less than a threshold h. In this work, h  simply elimi-

nates half of the coefficients.     

The pair-wise classification of the test vectors is performed ac-

cording to Eq.(11), 

( ) sgn ( , )i s s s i
s SV

F y K bt t t= +                      (11) 

where F(.) describes the decision rule of the binary classifier, it is

the considered test vector, SV is the support vector set  determined 

at the training stage, ,s SVt  is the support vector that corre-

sponds to 0
s , and b  is the bias term obtained by the SVM 

training. After the pair-wise classification, the final decision has 

been made by voting using the “Max-Wins” strategy which assigns 

the test vector to the class which has the largest number of votes [7].   

5. TEST RESULTS 

5.1. Test Data and Performance Measures 

A test data set is prepared by sampling various speech and music 

files at 44.1 kHz (16 bits/sample, N=1024). The test set consists of 

watermarked and un-watermarked audio files in total length of 15 

hours. Watermark embedding within a 0-22050 Hz frequency band 

is achieved by using the adaptive WM encoder with a WM se-

quence of length L = 15 bits. 

Watermark decoding performance is reported in terms of the 

ratio of False Positives (FP) and False Negatives (FN) versus WSR 

and SNR. FP and FN can be defined as: 

( ) ( | ) ( | )i j i kFP i P H H P H H                            (12) 

( ) ( | ) ( | )j i k iFN i P H H P H H  .     (13) 

In Eq. (12) and Eq.(13), FP(i) ( FN(i)) denotes the ratio of  FP

(FN) for the hypothesis Hi, where , ,i j k , refer to the hypothesis   

0,1 , or 1a b , defined in Sec. 3,  and i j k .

WSR can be defined as the ratio of the watermarked signal 

power to the original signal power. In a similar way, SNR can be 

defined as the ratio of the original signal power to the noise power. 

The decision threshold thr in Eq. (5) is set to 0.01 for the correlation 

based classifier.  

The SVM based classification has been performed by using 

RBF kernel with the parameters 22 and C = 1.  The SVM 

classifier is trained by an audio file of length about 417 sec which 

consists of   l=6000 audio frames per class, where each frame is of 

length N=1024 samples. It is observed that the decoding perform-

ance does not rely on the selection of training set. Thus, test results 

reported in this section are obtained by the training data collected 

from a single audio clip. The training is performed only once and it 

takes about 21 minutes on a computer which utilizes a 2.8 GHz 

Pentium IV machine. As a result of training, 1880, 1875, and 3792 

support vectors are obtained for Class 1, Class 2 and Class 3, re-

spectively. The support vectors are used for classifying the test vec-

tors. Thus, training is an offline process. The classification of a test 

vector takes about 0.1 sec where the length of the test vector is N = 

1024 (0.023sec).  

5.2. Performance versus WSR and SNR 

The performance of the proposed method at different WSRs has 

been examined for watermark decoding and detection. The distribu-

tions of FP and FN versus WSR, obtained for only Decoding (Dec) 

and both Decoding and Detection (Dec + Det), are presented in Fig 

1.(a) and (b), respectively. In these figures, index “SVM” refers to 

the introduced decoder and index “cor” refers to the traditional cor-

relation-based audio WM decoder. The length of the test set is about 

six hours. In Fig.1, it is seen that the decoding performances of both 

decoders are nearly the same. In terms of Dec + Det performance, 

the FP and FN of  the introduced SVM-based decoder remain less 

than 5% when WSR -30 dB. Although the correlation-based de-

coder can decode the WM bits with high accuracy, its Dec + Det 

performance drops significantly, and the FP and FN values increase 

to around 17% and 25 % at all WSRs. This indicates that the corre-

lation-based decoder is not capable of detecting the un-watermarked 
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audio clips while decoding. Note that, we tried to improve the per-

formance by using a correlation threshold which is different from 

zero. However, it is not possible to specify a good threshold ade-

quate for all of the audio clips.   

Robustness to channel noise is also evaluated for decoding and 

detection and results are reported in Fig.2.  The length of the test set 

is about six hours. As it is seen from Fig.2(a) and (b), the decoding 

results obtained by both decoders are nearly the same. After SNR = 

15 dB, the SVM based classifier achieves Dec+Det with low FPs

and FNs. FPs and FNs obtained by the correlation-based classifier 

for Dec+Det at SNR = 15 dB are about 20% and 30%, respectively. 

Similar to the results obtained above, the high FP and FN values 

obtained by the correlation-based method denote that the correlation 

method is not capable of detecting un-watermarked audio clips. This 

reduces its overall decoding performance. On the other hand, learn-

ing process provides a powerful alternative to the adaptive specifica-

tion of the decision boundaries rather than specification of a deci-

sion threshold. 

         (a)                                                    (b)  

Fig.1: (a) FP versus WSR (b) FN versus WSR.  
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Fig.2: (a) FP versus SNR (b) FN versus SNR.  

5.3. Robustness to Stirmark Attacks 

In order to quantify the robustness of the proposed decoding 

method to the standardized audio watermarking attacks, the Stir-

mark benchmark program is used [8]. For this experiment, an 6 

min audio clip including un-watermarked and watermarked  

(WSR = -32 dB) portions is used. Decoding and detection is per-

formed on the original, the marked copy, and all 46 clips created 

by the Stirmark Audio program. As the FP and FN values re-

ported in Table 1 demonstrate, the SVM-based decoder is robust 

to several add/remove (add_brumm_10100, add_noise, addsinus, 

dynnoise, lsbzero), filter (compressor, rc_higpass, rc_lowpass) 

and modification (zerocross) attacks. Although the performance 

decreases in “rc_lowpass” and “zerocross” attacks, the FP and FN

values still remain in an acceptable range. However, traditional 

correlation-based decoder is not robust to these Stirmark attacks. 

Table 1: FPs and FNs obtained by the correlation and SVM based 

classifiers for Stirmark attacks.  

Classifier SVM Correlation 

Attack FP(%) FN(%) FP(%) FN(%) 

original 0.105 0.192 16.594 25.082 

addbrumm_10100 0.105 0.192 16.69 25.183 

addnoise_900 0.476 0.831 16.709 25.208 

addsinus 0.112 0.206 17.119 25.799 

compressor 0.326 0.593 16.596 25.028 

dynnoise 0.535 0.928 16.511 24.893 

fft_real_reverse 0.105 0.192 16.615 25.058 

lsbzero 0.105 0.192 16.695 25.185 

normalize 0.273 0.428 16.69 25.174 

rc_highpass 0.103 0.186 16.585 25.027 

rc_lowpass 3.772 7.564 16.493 24.912 

zerocross 2.653 5.177 16.943 26.069 

6. CONCLUSION 

This paper proposes a blind audio watermark decoding scheme 

based on supervised learning of the watermarked audio signals 

which combines the watermark decoding and detection problems 

into a single classification problem. Performance of the proposed 

decoder is superior to the classical correlation based method in both 

distorted and non-distorted environment. 

In order to reduce the computational complexity, we are work-

ing on the selection of optimal feature space dimension. Since the 

watermarking is a nonlinear process, principal component analysis 

is not an adequate method to reduce the dimensionality. Currently, 

we are investigating the learning performance on the wavelet detail 

coefficients. Preliminary results are promising.  
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