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ABSTRACT 

 

We present a new method for improving the classificacation 

score in the problem of binary hypothesis testing where the 

classes are modeled by a Gaussian mixture. We define a cost 

function which is based on the Chernoff distance and from it 

a transformation matrix is estimated that maximizes the 

separation between the classes. Once defined the cost 

function we derive an iterative method for which we give a 

simplified version where one mixture component per class is 

previously selected to participate in the estimation. The 

initialization of the method is studied and we give two 

possibilities for this. One is based on the Bhattacharyya 

distance and the other is based on the average divergence 

measure. The experiments are carried out over a database of 

speech with and without pathology and show that our 

approach represents an improvement in classification scores 

over other methods also based on matrix transformation. 

1. INTRODUCTION 

 

The problem of class separability is well known and has 

been studied in several papers. The main problem is that the 

classification scores degrade significantly when the classes 

are highly confusable. Our main objective is to tackle this 

problem in order to achieve low confusability in binary 

hypothesis tests. Various discriminative methods have been 

proposed in the literature to deal with the problem of 

confusability. Some methods use an optimization criteria 

based on mutual information [1] or on minimum 

classification error [2] to estimate model parameters such 

that the separation between the competing classes was 

maximized. In [3] an average divergence measure is used as 

criterion for finding a transformation matrix which maps the 

original features into a more discrimitave subspace to 

improve class separability performance. This and other 

approaches [4,3,6] use subspace projections that map the 

feature space into a new subspace by maximizing an 

appropriately chosen class-separability criterion. We have 

previously worked in this idea [7] relying on the concept of 

divergence as a measure of separation between competing 

states in binary hypothesis where each class is modelled by 

means of Hidden Markov Models. The paper presented here 

is not an incremental work based on [7]. Rather it offers a 

new vision in the design of transformation matrices. 

A key idea behind our approach to the design of 

transformation matrices is the Chernoff distance. This 

distance can be used to determine an upper bound of the 

probability of error. Based on this distance, we start by 

defining a cost function which through its maximization let 

to address a minimization of the classification error. Thus, 

maximizing this cost function is proposed as a criterion for 

estimating the matrix that maps the feature space into a new 

subspace. A similar idea of using the Chernoff distance as a 

criterion is presented in [8] where the distance is defined 

using the notion of directed distance matrices.  

This matrix is automatically trained using a cost 

function based on the Chernoff distance. A selected set of 

Gaussians from each class participates in the process and the 

transformation matrix is expected to separate the Gaussians 

in the new subspace. For this purpose we develop an 

iterative method based on the steepest ascent method that 

aims at finding the maximum separation between the 

Gaussians that represent the classes. In iterative methods the 

initialization is of major importance because affects the 

evolution to a global or a local maximum.  Two different 

initializations are studied that use a definition of distance 

from the mean vector and the covariance matrix. One 

definition aims at maximizing the Bhattacharyya distance 

and the other aims at maximizing an average divergence. 

Once defined the cost function and the maximization 

method we center our experiments in pathological speech 

classification. The vectors in the original space are formed 

by Mel-warped log-filterbank energies (MFE) features. 

Hence, the aim of the experiments is to obtain a 

transformation matrix to a new space where speech with and 

without pathology can be better separated than with other 

methods. A reference transformation matrix is the one based 

in the discrete cosinus transform which is classic in the 

speech recognition literature.  

A set of experiments are carried out over a pathological 

speech database. A variety of methods to estimate 

transformation matrices is applied for comparison purposes 
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and the results show that our method shows promising 

results that outperform the other methods. 

 

2. DEFINITION OF A COST FUNCTION BASED ON 

THE CHERNOFF DISTANCE 

 

The Chernoff distance is a measure of similarity between 

two probability density functions (pdf). For example, each 

pdf may define the probability of pertaining to a given class, 

and therefore signifies how similar or different the two 

classes are. This distance can be defined as follows [5]: 
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where pi(X)= p(X/wi) {i=1,2} and Pi=P(wi) are the 

conditional probability density and the a priori probability of 

class ‘i’, respectively. Obviating the maximization in (2.1) 

with respect to α and without loss of generality it is assumed 

to be constant hereafter and equal to ½ in the experiments. A 

maximum similarity between densities is seen as a tendency 

of D  to 0 while a minimum similarity is seen as tendency of 

D  to infinity. Note that D  = 0 when pi(X) = pj(X) or in the 

trivial cases α={0,1}, and D  = ∞ when the two classes are 

absolutely separable and their pdf’s do not overlap. The 

important fact for our purposes is that the larger the distance 

D  is between the two distributions, the smaller the 

probability of misclassification between classes. In fact, the 

expression in (2.1) is often used for obtaining an upper 

bound on the probability of misclassification such that the 

bigger the distance the smaller that probability. Thus, 

maximizing the Chernoff distance is used here as a key idea 

that will be further used for finding a transformation matrix 

from an original space to a transformed one where the 

classes are maximally separated. 

Now let Υ={(x
1
,y
1
),…,(x

N
,y
N
)} be a finite set of training 

instances, where each instance x
t
 corresponds to a label 

y
t
={1,2}. Let A (k x m) be a linear matrix which maps an 

original observation x
t into a transformed one as v

t
 = A

T
x

t, 

where x
t
 is a k-dimensional vector, v

t
 is an m-dimensional 

vector and m≤k. The convex nature of (2.1) due to the 

application –Ln[.] over the integral is not appropriate for 

obtaining the transformation matrix ‘A’ that maximizes the 

separation between classes. Instead, we propose a cost 

function based the Chernoff distance as follows: 

 

[ ]{ }∑ =
−−⋅−= N

t
tt

A
vpPvpPLnsD

1
1
2

1
211

,
)()(tanhmax αααα

α
   (2.3) 

where the integral has been substituted by a summation 

because the training set is finite, the hyperbolic tangent has 

been introduced for convenience and s>0 is a constant factor 

that controls the dynamic range of the argument. Notice that 

now when the pdf’s of the two classes tend to overlap both 

D and D  tend to zero but when the overlap decreases then 

D  tends to one. The resulting function is concave 

increasing and facilitates the search for minimum 

overlapping (confusability) between classes by searching for 

the maximum of (2.3). This search will be done with a 

steepest ascent method that is presented in the next section. 

 

3. MAXIMITATION OF THE COST FUNCTION 

 

Let’s particularize for the case in which each class j={1,2} 

probability pj(X) is characterized by a mixture of M 

Gaussian components with means i
jµ , covariance 

matrixes i
jΣ , weighting factors i

jω  and {i=1,…,M}. The 

objective is to obtain the matrix A such that the cost function 

is maximized since it is associated to a minimum 

classification error. To do that we start by taking the partial 

derivatives of (2.3) with respect to A. Applying the chain 

rule the derivative first becomes 
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Now let’s develop more in detail the partial derivative 

with respect to A in the right hand side of (3.1). Taking 

again the chain rule and derivating the logarithm in this way 

[ ] [ ] [ ])()()()( ' xgxgLnxgxxgLn ∂∂=∂∂ , the second factor in 

square brackets of the right hand side of equation (3.1) can 

be made equal to 
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where the denominator in the right hand side of equation 

(3.2) acts as a normalization weight of the contribution to 

the derivative from each training vector xt
. The numerator 

has the partial derivatives of both mixtures with respect to 

matrix ‘A’. Since these derivatives include several terms and 

some of them are numerically negligible we will make the 

simplification that only the most important component from 

each mixture is taken into consideration. Thus, only single 

mixture components from each class are considered in (3.2). 

The expression of the single component ‘i’ from class 

‘j’ in the transformed space can be expressed as: 
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For example, in the particular case of class j=1, the partial 

derivative with respect to the transformation matrix ‘A’ of a 

given component ‘i’ in (3.2) is: 
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where ( )( ) AxxAB
Ti

j
ti

j
tTi

j µµ −−= . Note that (3.4) is estimated for 

each training vector xt
 and therefore each one of them will 

directly influence the estimation of A. 

Using equation (3.4) and making some mathematical 

manipulations, the derivative of the product in (3.2) and 

rearranging the results from the derivatives, equation (3.2) 

can be rewritten as 
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where components ‘i’ and ‘l’ have been taken from class 1 

and 2, respectively. 

The transformation matrix could be obtained by 

solving equation (3.1) equating to cero, which is difficult. 

Instead, we will apply a steepest ascent method for finding 

matrix A, i.e., given an initial matrix A
0
 and update matrix 

A
(l)

 in the following manner: 
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for {l=1,2,..., Nl} where ‘l’ is the iteration index, Nl is the 

number of iterations, γl= γ0 (1-l/Nl) is a step size that 

depends on the step and γ0 is a small initialization constant 

that has been set to 0’1 in the experiments. We call our 

method Iterative Chernoff Maximization (ICM). 

Now we can make some considerations. The factor (1 – 

tanh2[.] ) in (3.1) plays an interesting role because it is a 

reflection of the way in which the cost function progresses to 

its maximum when a new iteration is performed. Thus, this 

factor tends to zero making the derivative smaller step by 

step. The product between the smoothing factor ‘s’ and the 

step size γl act as a prevention from a fast progress of (2.1) 

to the maximum. 

The way in which the initialization matrix A
0
 is 

estimated is open. In this paper we will study two possible 

initializations. In the first, we use the Bhattacharyya distance 

as defined in [6, 5] which is coherent with the Chernoff 

distance when α=1/2. Then, A
0
 can be estimated as folllows. 

Let U = [u1,…,un] be the eigenvector matrix, and let 

Λ=diag(λ1,…, λn) be the eigenvalue matrix of Σ2
-1

Σ1 where 

the super indexes identifying the components from each 

class mixture have been omitted. Hence in the original space 

the Bhattacharyya can be written as 
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Since we want to maximize the B(1,2) distance, the 

columns of the matrix A
(0) can be initialized with the m 

eigenvector of Σ2
-1Σ1 corresponding to de m largest [.] terms 

in (3.7).  

And in the second initialization, we use the 

transformation matrix that maximizes the average 

divergence measure (ADM) as defined in [3]. The matrix A 

that maximizes the average divergence can be formed by 

selecting the m eigenvectors of the matrix (V-1*M) 

corresponding to the m largest eigenvalues, where V is a 

common covariance matrix among all classes and M is a 

matrix that can be defined as follows 
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4. EXPERIMENTS AND RESULTS 
 

For the classification experiments we used speech with and 

without pathology. The database is composed of 54 speakers 

without pathology and 608 speakers with pathology from the 

Disordered Voice Database Model 4337. Recordings 

consisted in sustained vowel /ah/. A half of the database was 

used for training and a half for testing. The original features 

were MFE obtained by applying m=20 triangular filters to 

the magnitude spectrum and the dimensionality in the 

transformed space is k=10. The speech waveforms are 

sampled at 25 KHz, and are blocked into 1500 samples from 

30 msec. frames with 20 msec. of overlap between adjacent 

blocks. Each frame is passed through pre-emphasis filter and 

a Hamming window. Then, a 2048 points FFT is applied to 

the frame to produce a 1024-point power spectrum. The 

power spectra are combined using a weighted sum, shaped 

by the triangular filter, to obtain the filter output. Logarithms 

of the 20 outputs are then calculated arriving at 20 MFE for 

each frame. The whole set of training vectors is used to 

characterize each class by a mixture of Gaussian probability 

densities with M=4 or 6 components. For comparison 

purposes we have made experiments in the original space 

(MFE) and in the transformed space with MFCC, ADM and 

ICM with the two initializations introduced in section 3. We 

have experimentally found that a good choice of the control 

factor in (2.3) is s=1/32. Note that the sub index in ICM 

stems from the method for initializing the transformation 

matrix where sub index B indicates Bhattacharyya method 

and L indicates the transformation matrix obtained from the 

ADM method. In table 1 we show the classification scores 

for the four methods mentioned in the previous sections. As 

we can see, both versions the method we propose, ICM, 

outperform the MFE, MFCC and ADM in all experiments. 
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It is interesting to observe that the MFCC 

transformation does not improve the classification scores in 

comparison with MFE in contrast to what one could expect 

from the literature. The scores obtained from the other 

transformations are really improved. Both ICM(B) and 

ICM(L) give the best results. 

 

Method M Scores 

MFE 6 85.49% 

MFCC 6 84.29% 

ADM 6 92.45% 

ICM (B) 6 93.05% 

ICM (L) 6 94.86% 

MFE 4 84.59% 

MFCC 4 78.85% 

ADM 4 92.75% 

ICM(B) 4 94.26% 

ICM (L) 4 93.05% 
TABLE 1. Classification scores for the different methods 

 

Since the amount of examples for the non pathologic 

speech is small, we show in tables 2 and 3 the confusion 

matrixes of the different methods between pathologic (PS) 

and normal (NS) speech.  

In table 2 the number of component per mixture is M = 

6 while in table 3 the number of component per mixture is 

M=4. From the table we can see that again de ICM method 

offer the lowest confusion score even for the NS class that 

has such a small amount of examples compared with the PS 

class. 

 
TABLE 2. Confusion Matrixes for the different methods with M=6 

 

Method Pathology NS PS 

MFE NS 81.48% 18.52% 

MFE PS 15.13% 84.87% 

MFCC NS 88.88% 11.12% 

MFCC PS 22.04% 77.96% 

ADM NS 81.48% 18.52% 

ADM PS 6.25% 93.75% 

ICM (B) NS 85.18% 14.82% 

ICM (B) PS 4.93% 95.07% 

ICM (L) NS 81.48% 18.52% 

ICM (L) PS 5.92% 94.08% 

 
TABLE 3. Confusion Matrixes for the different methods with M=4 

 

5. CONCLUSIONS 
 

Up to our knowledge no previous work has addressed the 

problem of class separability by maximizing the Chernoff 

distance through a matrix transformation in the same way we 

do in this paper. We have formulated a cost function based 

on this distance and we have given the formulae for an 

iterative maximization. The simplified version presented 

here is computationally less demanding than the original one 

while give good classification scores. Obviating 

simplifications, from a theoretical point of view, in this 

paper we open the scope of possibilities to obtain 

transformation matrices, but also all the parameters that 

parameterize the mixture components of each class. This and 

other related subjects will be a matter of future work in 

binary and M-ary hypothesis testing with a special emphasis 

in extending the formulation to hidden Markov models. 
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