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ABSTRACT

We present an approach for vehicle classification in IR video se-
quences by integrating detection, tracking and recognition. The method
has two steps. First, the moving target is automatically detected us-
ing a detection algorithm. Next, we perform simultaneous tracking
and recognition using an appearance-model based particle filter. The
tracking result is evaluated at each frame. Low confidence in track-
ing performance initiates a new cycle of detection, tracking and clas-
sification. We demonstrate the robustness of the proposed method
using outdoor IR video sequences.

1. INTRODUCTION

Recently, video-based vehicle classification has gained much atten-
tion, especially in automatic traffic management, surveillance and
battlefield awareness. Typically, detection and tracking are often
solved before classification. [1] discusses pose determination and
recognition of vehicles in traffic scenes, which under normal condi-
tions stand on the ground-plane. In [2], a segmentation algorithm
uses deformable template models to segment a vehicle of interest
both from the stationary complex background and other moving ve-
hicles in an image sequence. In addition to segmentation, the de-
formable template algorithm also classifies the vehicle of interest. In
[3], the author describes a system for automatic recognition of vehi-
cle type from frontal views. They only use images and it does not
involve tracking. In [4], a method for recognizing a vehicle’s maker
and model is proposed. It first creates a compressed database of lo-
cal features of target vehicles from training images and then matches
them with the local features of the probe image for recognition.

Fig. 1. A flow chart of our system.

In this paper, we tackle the problem of vehicle classification
by integrating detection, tracking and recognition. In our system,
the moving vehicle is automatically detected, tracked and recog-
nized without any interruptions. The flow chart of our system is
shown in Fig.1. The video sequences are input to our system. The
moving target is detected using temporal variance analysis. The
target is tracked and classified simultaneously using an appearance
model and mixtures of probabilistic principal component analysis
[5](PPCA). Evaluation of the tracking performance is performed at

each frame. If the performance falls below some threshold, the cycle
of detection, tracking and classification is re-initiated, otherwise the
tracking and classification propagates to the next frame. The target-
to-background contrast is very low for the IR images. This adds
much difficulty for detection and tracking of the moving target.

Unlike Zhou et al.[6]’s method which manually selects the mov-
ing target in the first frame, we automatically select it using temporal
variance analysis algorithm. Because of the presence of smoke and
dust in IR videos, it is hard to position a tight rectangular bound-
ing box from the detection algorithm. Consequently, the tracker
drifts quickly. This brings a need for the evaluation of the track-
ing performance. The evaluation generates a confidence measure to
indicate whether we should restart the detection once the tracking
confidence falls below a threshold. In [6], Zhou et al. use sum of
squared distance(SSD) for the tracked object and template to give
the probability of tracking. Therefore, it gives the same weight to
each pixel. Here we propose to use two template matching algo-
rithms, Image Euclidean Distance and Image Weighted Distance, to
substitute SSD. These two algorithms are robust to small perturba-
tion and background clutter.

We use mixtures of PPCA[5] for appearance modelling. We then
compute the posterior probability of finding the appearance of each
object in the given video and assign the label corresponding to the
maximum.

The rest of this paper is organized as follows. Section 2 briefly
describes detection algorithm. Section 3 describes the template match-
ing algorithms used for the tracking. Section 4 describes tracking
and classification algorithm. Section 5 describes the simultaneous
evaluation for the tracking and section 6 describes the experiment.
Finally, conclusion and future work are discussed in section 7.

2. TARGET DETECTION

Detection plays an important role in our system. It is a prerequisite
for tracking and places an initial bounding box around the target and
re-initialize the target if tracking confidence measure is low. We
briefly review the temporal variance analysis for object detection in
the following.

Given a video sequences {Ii}, we set m1 = I1 and mv1 =
I1 × I1. The operator × is the element-by-element product of two
matrices. The following mi, mvi and imvari are defined as

mi = ((N − 1) ∗ mi−1 + Ii)/N (1)

mvi = ((N − 1) ∗ mvi−1 + Ii × Ii)/N (2)

imvari =
√

mvi − mi × mi, (3)

V ­ 7451­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



where N is the window size for detection which is 150 in our exper-
iment.

For the element p(i, j) in imvari, we will set p(i, j) = 1 if
p(i, j) > T , otherwise p(i, j) = 0, where T is the threshold. Now
imvari is converted to a binary image which we call the variance
image. We then select the rectangular bounding box for the moving
target by checking p(i, j) = 1 in the image.

3. TEMPLATE MATCHING

Suppose that two images z and t are rasterized to form two vectors,
z = (z1, z2, · · · , zMN ), t = (t1, t2, · · · , tMN ), where z is the
tracking result and t is the template. In [6], the probability of the
tracked object given the template is defined as

p(z|t) = exp{−d2
SSD(z, t)} = exp{−

MN∑

i=1

(zi − ti)
2} (4)

SSD gives the same weight to each pixel which is not robust to small
perturbation and background clutter. In order to solve these difficul-
ties, we propose two template matching algorithms in the following
section. The sum of the two distances replaces the SSD d2

SSD(z, t)
to give a probability of the tracking result.

3.1. Image Euclidean Distance

Wang et al. [7] propose a new Euclidean distance for images, which
is dubbed as Image Euclidean Distance(IMED). Unlike the tradi-
tional Euclidean distance, IMED takes into account the spatial rela-
tionships of pixels. Therefore, it is robust to small perturbation. The
IMED is given by

d2
IME(z, t) =

1

2π

MN∑

i,j=1

exp{−|Pi−Pj |2/2}(zi−ti)(zj−tj). (5)

where Pi and Pj are two pixels associated with zi, ti and zj , tj re-
spectively, |Pi − Pj | is the pixel distance.

3.2. Image Weighted Distance

When we use a rectangle or ellipse to select the region of interest, we
inevitably include some background in the region of interest. The
background will contaminate the template and contribute to tracking
failure. Inspired by [8], we propose an image weighted distance
method to overcome this problem.

The image weighted distance is given by

d2
IMW (z, t) =

MN∑

i=1

wi(zi − ti)
2 (6)

where wi is the weight assigned to the squared difference of each
pixel. The weights are smaller for pixels that are farther from the
center. Using these weights increases the robustness of matching
since the peripheral pixels are the least reliable, being often affected
by occlusion, clutter or interference from the background. The weight
function is a 2D Gaussian kernel. Suppose w and h are the width and
height of the image, respectively. The weight for the pixel at location
(x, y) is

w(x, y) = 1 − 1

2
{(x − x0

w/2
)2 + (

y − y0

h/2
)2} (7)

where x0 and y0 is the center of the template.

4. TARGET TRACKING AND CLASSIFICATION

This section describes the vehicle tracking and classification algo-
rithm. In section 4.1, the state space model used for tracking and
classification is described. Tracking and classification are imple-
mented simultaneously by estimating the posterior distribution . In
section 4.2, mixtures of PPCA is briefly described which is used to
estimate the distribution of identity variable for the classification.

4.1. State Space Model

A time series state space model uses the state variable xt = {nt, θt},
which includes identity variable nt and 2D affine transformation mo-
tion parameters θt. The system equation is written as

nt = nt−1 θt = θt−1 + ut, t ≥ 1 (8)

where we assume that the motion variable follows a Markov process
with ut as a white Gaussian noise process. nt ∈ N = {1, 2, · · · , N}
indexes the gallery set {I1, I2, · · · , IN}.

A simple formulation of the observation equation can be charac-
terized as

Zt = T{Yt; θt} = Int + Vt (9)

Where Zt is the image patch of interest in the video frame, T is
an affine transformation to normalize the image to the same size
of the gallery images, and Vt is the noise. The observation equa-
tion is equivalently characterized by the likelihood p(Yt|nt, θt) =
p(Zt|nt). In the next section, we define p(Zt|nt) as mixtures of
PPCA.

The essence of the framework is posterior probability computa-
tion, i.e. computing p(nt, θt|Y1:t), whose marginal posterior proba-
bility p(nt|Y1:t) solves the classification task and marginal posterior
probability p(θt|Y1:t) solves the tracking task.

Classification is based on a Maximum A Posteriori (MAP) deci-
sion rule, namely finding nt that maximizes p(nt|Y1:t). The Sequen-
tial Importance Sampling(SIS)[9] method is used to approximate and
propagate the posterior probability p(nt, θt|Y1:t), and marginaliza-
tion over variable θt is carried out before applying the classification
rule. Detailed descriptions can be found in [6].

4.2. Mixtures of Probabilistic PCA

Subspace analysis techniques have attracted growing interest in com-
puter vision research. In particular, eigenvector decomposition has
been shown to be an effective tool for solving problems by using
low-dimensional vector to represent high-dimensional vector. Here
we will follow [5] for the mixtures of PPCA.

Given a set of m by n images {Zi}, we form a set of vectors
{ti}, where ti ∈ Rd=mn, by lexicographic ordering of the pixel
elements of each image Zi. For any t in {ti}, we relate it to a cor-
responding γ-dimensional vector variable x as: t = Wx + µ + ε,
where d >> γ and µ is the mean of t. First, in PPCA, it is as-
sumed that x ∼ N(0, I) and ε ∼ N(0, σ2I). Thus, we obtain the
distribution of t as

p(t) = (2π)−d/2|C|−1/2exp{−1

2
(t − µ)T C−1(t − µ)}, (10)

where the covariance is C = σ2I + WW T .
The mixtures of PPCA can model more complex data structures.

The model parameters are determined using maximum likelihood
estimation. The mixture model is defined as

p(t) =
M∑

i=1

πip(t|i) (11)
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where p(t|i) is a single PPCA model and πi is the corresponding
mixing proportion, with πi ≥ 0 and

∑
πi = 1. Now the three

parameters µ, W and σ2 are associated with each of the M mixture
components. We use an iterative EM algorithm for estimation of the
model parameters.

5. TRACKING EVALUATION

Most practical tracking systems often fail under some situations.
This could be either because of illumination changes, pose varia-
tion or occlusion. Therefore, the need for automatic performance
evaluation emerges in these applications. Fig.2 shows the tracking
result after running the tracker for some time. The bounding box is
so large that one concludes that the tracker is already failing. Hence,
evaluation is necessary to help us terminate tracking and restart the
detection-tracking-classification sequence.

Fig. 2. The vehicle is off tracking.

Our evaluation algorithm is based on measuring the appearance
similarity and tracking uncertainty. The following features are ex-
amined in our evaluation:

1. Trace complexity qtc: We define the trace complexity as the
ratio of the curve length and straight length between the target
centroids in different frames.

2. Motion step qms: It is defined as the distance between the box
centers in two consecutive frames.

3. Scale change qsc: To examine changes in object scale, we
use two clues. One is the ratio of the current area to the initial
area, the other is the scale change velocity.

4. Shape similarity qss: The change in the aspect ratio of the
bounding box is also useful in providing some information
about the object shape. It is defined as the ratio of the current
aspect ratio over the initial ratio.

5. Appearance change qac: Three measures are used in our al-
gorithm, the first one is the absolute pixel by pixel change be-
tween the current frame and the initial frame, the second one
is the histogram difference between the current frame and the
initial frame and the last one is related to the tracking algo-
rithm over which the proposed algorithm was tested.

To obtain a comprehensive measure of the tracking performance,
we combine the above five indicators. We first use empirical thresh-
olds to find whether the tracker is uncertain according to the above
five metrics, then we sum the five indicators using different weights
to arrive at a confidence measure q. If the sum drops below some
threshold, we conclude that the tracking performance is poor and
needs re-initialization.

q =
∑

j∈J

wjI[qj < λj ], J ∈ {tc, ms, sc, ss, ac} (12)

where wj and λj are the corresponding weights and thresholds for
the evaluation.

6. EXPERIMENTS

In this section, we give details of our implementation. Training and
testing are described in the next two sections respectively. In our ex-
periment, the vehicle motion is characterized by θ = (a1, a2, a3, a4, tx, ty),
where {a1, a2, a3, a4} are the deformation parameters and (tx, ty)
are the 2D translation parameters. By applying an affine transforma-
tion using θ as parameters, we crop the region of interest so that it
has the same size as the still template in the gallery and perform zero-
mean-unit-variance normalization. The region of interest is 24 × 30
in size.

6.1. Training

We use one video sequence for each vehicle and obtain the tracking
result. Then we select 36 images for each vehicle in the gallery.
There are a total of 144 images in the gallery. They are ‘m60’,
‘brdm’, ‘wetting’ and ‘bmp’. The pertinent parameters for the ex-
periment are M = 2 and γ = 15. After we have the gallery images,
we use mixtures of PPCA to estimate the parameters πi,µi, Wi and
σ2

i .

6.2. Testing

For each frame, we get the motion parameters after tracking and
cropping out the region of interest from the original image. After
performing zero mean and unit variance operation, we use the re-
sult to estimate the posterior probabilities of observing each vehicle.
We pick the vehicle which has the highest probability as our clas-
sification result after normalization. The probabilities propagate to
the next frame. In each frame, if the confidence measure is below
some threshold, the detection will restart 20 frames before the drift-
ing point and tracking and classification will restart too.

Fig. 3 shows the tracking and recognition results for ‘wetting1’
and Fig. 4 is for ‘bmp1’. In Fig. 3, The image to the left is the
tracking result for the current frame. We put a bounding box for the
vehicle which we are tracking in each frame with a different color
for different vehicles. The image in the middle is the classification
score which is the probability of seeing each vehicle in the video. It
shows the result from the first frame to the current frame. The image
to the right is the tracking confidence measure which represents the
probability of the correct tracking result. We will restart detection
and tracking if the measure falls below the threshold of 0.5. The
same description applies to Fig. 4.

From Fig. 3, we observe that the recognition result for the ‘wet-
ting1’ is very good because a high probability is associated with
‘wetting’ (dotted blue line) on almost every frame. There are several
peaks and valleys for the dotted blue line due to the re-initialization
of the tracking and the evaluation probability on the right drops very
quickly at corresponding frames. In Fig. 4, for the recognition of
‘bmp1’, it is confused by ‘brdm’ for first half of the sequence. The
tracker quickly drifts away after about 40 frames given the initial lo-
cation. The result becomes stable and correct after 400 frames. After
running the whole video sequence, the correct recognition result is
quite good. For this situation, we will classify that the vehicle we
are tracking is ‘bmp’ which yields the correct result.

We divide the twenty probe video sequences into five groups.
Each group has each of the four different vehicles. The classifica-
tion results of one group are summarized in Table 1. Each number in
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Fig. 3. Tracking and recognition results for ‘wetting1’. The results are from frame 1 to 799. The left panel shows the original image and
tracking result, the middle panel shows the recognition density p(nt|Y1:t), and the right panel shows the tracking confidence q.

Fig. 4. Tracking and recognition results for ‘bmp1’. The results are from frame 1 to 830.

m60 brdm wetting bmp
m60 93.82% 3.17% 0 3.01%
brdm 0 85.64% 0 14.36%

wetting 0 0 95.65% 4.35%
bmp 0 18.85% 0 81.15%

Table 1. Confusion matrix for vehicle classification experiment.

a row is the recognition percentage of the vehicle. Taking the second
row as an example, 93.82% of the whole sequence recognizes the
vehicle as ‘bmp’, while 3.17% as ‘brdm’ and 3.01% as ‘bmp’. No
frame recognizes it as ‘wetting’. The elements in the diagonal give
the correct recognition score for our experiment. The overall accu-
racy of the recognition is 89.07%. Our experiment results show all
the twenty probe video sequences can be classified correctly using
our proposed method.

7. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an approach for vehicle classification
by integrating detection, tracking and recognition. The experiment
results prove our method’s robustness and effectiveness.

Our future work will include improving detection, tracking and
evaluation algorithms and developing a more robust and stable recog-
nition algorithm. Large data set will also be tested to obtain a more
general analysis.
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