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ABSTRACT

This paper proposes a dynamic MMSE estimator for tracking mobile

users in indoor Wireless Local Area Networks (WLAN) based on

Received Signal Strength (RSS). The method uses a training-based

static estimate obtained by an adaptive kernel density estimator as

the input into a Kalman Filter. Predictions from the filter are used

during the next iteration to adaptively select a subset of training data,

contained in a radio map, for the static estimator. Experimental re-

sults show that the combination of the Kalman filter and the adaptive

radio map technique results in nearly 0.5m (20%) improvement in

Root Mean Square location accuracy when compared to static local-

ization.

1. INTRODUCTION

Location-aware mobile devices have become an amenity since the

introduction of the E-911 mandate by the U.S. Federal Communi-

cations Commission, requiring wireless carriers to provide location

information on emergency callers. Cellular network infrastructures

have subsequently served as milieux for development of location-

based services. Location-awareness has also proved propitious in

indoor applications such as location-based network access and secu-

rity, automatic resource assignment, guidance of persons with dis-

abilities, monitoring of patients, and location-sensitive information

delivery. Unfortunately, the level of localization accuracy needed in

such indoor applications cannot be achieved by the existing cellular-

based methods. As an alternative, Wireless Local Networks (WLAN)

can be used for indoor localization as they offer ubiquitous coverage

in large areas. Furthermore, Network Interface Cards require no ad-

ditional hardware for reporting the Received Signal Strength (RSS)

which is used for localization of mobile clients. Lastly, because lo-

calization is carried out on the mobile client, no invasive sensing,

processing, and central storage is performed.

Despite the advantages of WLAN localization systems, the de-

pendence relationship between RSS and physical locations cannot

be trivially determined. Severe multipath and shadowing conditions

and non-line-of-sight propagation caused by the presence of walls,

humans, and other rigid objects give rise to a complex and time-

varying radio environment, making the estimation problem particu-

larly challenging.

Existing WLAN localization works can be divided into two cat-

egories namely, static and dynamic. Static methods [1, 2] use only

power measurements at the given time step to formulate the loca-

tion estimate. The estimation procedure generally involves an offline
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phase in which survey data measurements are collected at known

locations in the environment. The set of these survey locations to-

gether with their corresponding RSS measurements comprise what is

known as a radio map. Readings from the mobile user (MU) during

online operation are then compared against this radio map and the

corresponding estimate is returned. Existing works generally rely on

nearest neighbour classifiers or Bayesian estimator (Maximum Like-

lihood/Maximum A Posteriori) to obtain the location estimate from

the radio map data.

Considering that motion of human beings is generally correlated

overtime, dynamic localization solutions exploit past location esti-

mates, in addition to current RSS measurements, to calculate the lo-

cation estimate. The dynamic solution may entail a running average

of previous estimates [2] or rely on more sophisticated methods such

as the Kalman filter [3] or Markov-model based solutions [4, 5].

Traditionally, dynamic localization solutions have aimed to im-

prove the current estimate based on the users’ previous locations.

This paper goes a step further and exploits information regarding

future locations of the MU in forming the current estimate. Specif-

ically, predictions from the dynamic estimator are used to select a

subset of the radio map used for localization. We show how this

spatial filtering of the radio map can result in improved location es-

timates as compared with a nonadaptive technique by restricting the

estimate to relevant regions of the environment.

Fig. 1. Overview of the proposed system.

The outline of the proposed method is shown in Fig.1. We

first employ an Minimum Mean Square Error (MMSE) estimator for

static localization as described in Section 2. This estimate is used as

the measurement input into a dynamic estimator (the Kalman filter,

in this case). Location predictions from the filter are sent back to the

static estimator to adaptively select a subset of the training data for

the next estimation step. Details of the dynamic tracking and radio

map filtering are discussed in Section 3 and experimental results are

presented and discussed in Section 4.
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2. STATIC MMSE LOCALIZATION

This section describes a static estimator that uses RSS measure-

ments at time step k to generate a location estimate at this time us-

ing the radio map constructed in an offline stage. The radio map

contains a set of RSS measurements for n locations in the envi-

ronment, designated as survey points. Denote this map as S =
{{p1, r1,1, . . . , r1,T1}, . . . , {pn, rn,1, . . . , rn,Tn}} where, ri,j is a

vector of readings from m access points at time step j, for survey

location pi.

Since the location of a mobile user is represented in the Carte-

sian space, an appropriate estimation criterion is the minimization of

the squared error between a location estimate and its true position.

This view leads to a Minimum Mean Square Error (MMSE) estima-

tor for localization which corresponds to the conditional expectation

given below:

p̂MMSE = E(p|r) =

�
P pf(r|p)f(p)dp�
P f(r|p)f(p)dp

, (1)

where P denotes the region of space for which the conditional den-

sity f(p|r) is non-zero. The densities f(p) and f(r|p) are un-

known, they are estimated from the radio map data using nonpara-

metric techniques as described below.

The density f(p) contains the prior knowledge regarding the po-

sition of the mobile user before making an RSS observation. Gener-

ally, a uniform prior density can be assumed over the entire physical

space. Such an approach, however, ignores the physical topology of

the environment in terms of walls, furniture, and other spaces that

cannot be occupied by the user. This work exploits knowledge of

the location of survey points {p1, . . . ,pn} and considers these as

samples of the prior density. Then, the empirical probability den-

sity function (epdf) [6] is used as the estimate of the prior density as

shown below.

f̂(p) =
1

n

�
pi∈S

δ(p − pi). (2)

Substitution of(2) in (1) gives the estimate as a weighted sum of

the survey points:

p̂MMSE ≈= � pi∈S pif(r|pi)

� pi∈S f(r|pi)
(3)

Next, the estimation of the density f(r|pi) is considered. This

density is reported to be heavily dependent on environmental con-

ditions and may possibly be Gaussian, multimodal, or asymmetric

and long-tailed. In light of this, nonparametric tools are chosen to

estimate this density as they operate solely on the structure present

in the survey data and require no prior assumptions on the form of

the density. As an alternative to the histogram estimate commonly

used in prior work, this work makes use of a kernel density estima-

tor (KDE) due to its superior theoretical properties such as integrated

bias and variance [6, 7].

f̂(r|pi) =
1

Ti

Ti�
t=1

h−d
r K � r − ri,t

hr � . (4)

In (4), d is the dimension of r, Ti is the number of time samples

collected at pi, K(·) is a zero-mean, non-negative kernel function

with unit area (a Gaussian kernel is used in this work). The param-

eter h is the kernel width used to control the region of influence of

each survey value on the final estimate. Large smoothing parameters

capture the global structure of the density whereas smaller values

result in increased details. Ideally, the bandwidth should be small

in areas where the density is large and large where density is small,

specially in long-tail distributions that require sufficient smoothing

in the tail. Because RSS distributions are reported to be asymmetric

and long-tailed in many situations, an adaptive kernel density esti-

mator (AKDE) [6] is used to provide variable smoothing as shown

in (5).

f̂(r|pi) =
1

Ti

Ti�
t=1

h−d
r λ−d

i,t K � r − ri,t

hrλi,t � , (5)

where λi,t = � f̌(ri,t) � −0.5
are local bandwidth multipliers obtained

from a pilot density estimate f̌(ri,t) (e.g. constant bandwidth esti-

mator of (4)). Note that these values only depend on the survey data

and can therefore be calculated offline. As a final modification, stor-

age requirements of (5) can be reduced by grouping temporal sam-

ples with equal values. Denoting the temporal frequency of sample

ri,t as nt, the estimator becomes:

f̂(r|pi) =
1

Ti

T ′
i�

t=1

nth
−d
r λ−d

i,t K � r − ri,t

hrλi,t � . (6)

3. ADAPTIVE TRACKING

The static estimator of the previous section uses RSS observations

from time step k and the entire radio map information to form the

location estimate p̂(k) at this time step. Fortunately, human motion

is not completely random and the locations of the mobile user are

generally correlated overtime. Thus, the estimator can also bene-

fit from the knowledge of past location estimates in addition to the

RSS measurements. Another consequence of the time correlation of

locations is that future locations of the MU can be predicted from

past estimates. We propose to exploit this information by adaptively

selecting relevant regions of the radio map to be included during esti-

mation. The details of the proposed dynamic tracker and the adaptive

feature selection method are discussed in the rest of this section.

3.1. Dynamic Tracking

This work uses a Kalman filter (KF) for dynamic estimation. The

Kalman filter is a model-based recursive MMSE estimator of the

state of a linear time-varying system with noisy observations. The

state vector in our case contains the Cartesian coordinates of the user

as well as his/her velocity and is denoted as p = [px, vx, py, vy]T .

The outputs of the filter at time step k depend on measurements up

to time k and are the state estimate, p̂KF (k|k), and the error covari-

ance associated with this estimate, P̂KF (k|k).

To form the state estimate, the Kalman filter relies on two mod-

els. The first model describes the evolution of the state over time

whereas the second relates the measurements to the state. In our

case, the system equation corresponds to a model for motion of

pedestrians. The measurement equation must relate the RSS mea-

surements to the position of the user. However, since the relationship

between RSS and physical locations is non-trivial in indoor spaces,

we use a preprocessor to generate pseudo-measurements for the fil-

ter in a manner similar to [3,8]. As shown in Fig.1, this preprocessor

corresponds to the static estimator proposed previously. The out-

put of the static estimator, which corresponds to a location estimate

based on RSS measurements, is used as the measurement input for
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the filter. This measurement is then combined with previous location

estimates by the KF to produce an improved estimate. The system

and measurement equations described herein are as follows:

p(k + 1) = Fp(k) + w(k), (7)

p̂MMSE(k) = Hp(k) + υ(k), (8)

where p(k) is true location of the user at time step k, p̂MMSE(k)
is the estimate produced by the static estimator at time k, w(k) ∼
N (0, Q), υ(k) ∼ N (0, R(k)) are uncorrelated, zero-mean, white,

and Gaussian and F and H are the system transition and measure-

ment matrices given the sampling period T :

F = ��� 1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

� �
� H = � 1 0 0 0

0 0 1 0 � (9)

The measurement noise covariance can be directly obtained from the

static estimator [8]:

R(k) = Cov(p̂MMSE |r(k)) (10)

≈
n	

i=1

pip
T
i f̂(r|pi) − p̂MMSEp̂T

MMSE (11)

Although the Kalman filter is an optimum MMSE estimator for a

linear-Gaussian system, it produces a suboptimal result in the above

scenario. This is mainly due to the violation of assumptions on the

measurement noise. Specifically, the residuals from the static esti-

mator may not be zero-mean, white and Gaussian in practise. De-

spite this, however, Section 4 shows that the above modelling as-

sumptions do produce acceptable results.

The Kalman filter calculates the final location estimate in a two

step process. First, the state equation is used to predict the next

state of the system. Second, the incoming measurements are used

to adjust this prediction and produce the final estimate. Denoting

the estimate of the state at time k given measurements up to time j

as p̂(k|j) and the error covariance as P̂KF (k|j), the two steps are

summarized below.

1. Prediction:
p̂KF (k|k) → p̂KF (k + 1|k)

P̂KF (k|k) → P̂KF (k + 1|k)

2. Update
p̂KF (k + 1|k) → p̂KF (k + 1|k + 1)

P̂KF (k + 1|k) → P̂KF (k + 1|k + 1)

3.2. Adaptive Feature Selection

With reference to Fig.1, the dynamic estimator (KF) uses estimates

from the static estimator during its update step. The static estimator,

in turn, relies on the survey data of the entire radio map to produce its

estimate. Note, however, that the relationship between the observed

RSS and spatial positions is a many-to-many one. This is partially

due to the time-varying nature of RSS at fixed locations. In other

words, the same RSS can be observed at different locations from

the same access point depending on the geometry of the space and

time of observation. In order to resolve such ambiguities, this paper

proposes an adaptive method for selection of the survey points used

by the static estimator.

The adaptive selection method relies on the predication from the

Kalman filter to select relevant survey points at each step. To do this,

recall that the confidence region for the estimate p̂KF , assuming the

positioning error is approximately Gaussian, is determined by the

“g-sigma” ellipsoid defined as [9]:

(p − p̂KF )T P̂−1
KF (p − p̂KF ) = g2. (12)

The semi-axes of the above ellipsoid are g times the square root of

the eigenvalues of the covariance matrix P̂KF . The desired prob-

ability concentration can be achieved by selecting the parameter g.

For example, the probability of being inside the 3-sigma ellipse is

98.9%.

In the proposed method, the survey points falling into the g-

sigma ellipse are sent back to the static estimator. This feedback re-

sults in the inclusion of survey points that are physically “close” the

predicted location estimate. As previously mentioned, this spatial

filtering operator has the effect of reducing the number of outliers

during RSS comparisons and restricting the static estimator to the

relevant region of the environment. Experimental results reported in

the next section show the effectiveness of the proposed method in

reducing the positioning error.

4. EXPERIMENTS & RESULTS

This section investigates the effect of the proposed adaptive radio

map technique on positioning accuracy. To show this, we consider

the performance in 4 cases. Namely, the final location estimate is

taken to be the output of: 1) the static estimator1 2) the Kalman filter

using the static estimator as the preprocessor 3) the static estimator

that uses adaptive radio maps 4) the Kalman filter using the static,

adaptive estimator as the preprocessor.

Positioning accuracy of the methods under consideration is quan-

tified using the Root Mean Square Error (RMSE) measure where

positioning error is calculated as the Euclidean distance between the

true position and its estimate in the Cartesian plane.

4.1. Experimental Setup

The performance comparisons are done using data obtained from an

office environment on the forth floor of an eight story building at the

University of Toronto. Fig.2 shows the experimentation area layout

and the location of survey points, depicted as black circles.

Although there were several access points (AP) spread through-

out the floor, the reported results, use only four APs at each point.

The measurements were made on an Toshiba Tablet PC with a Pen-

tium III processor, a Netgear wireless card, and Windows XP oper-

ating system. RSS measurements were obtained by a publicly avail-

able network sniffer software, NetStumbler2. A total of 150 RSS

sample were collected at the sampling rate of 1 over two intervals

in two different days. Measurements were collected for a total of 39

survey points, covering a laboratory and a hallway as shown in Fig.2.

The points were separated by 2 meters on a uniform grid where not

restricted by physical constraints. For testing purposes, RSS samples

were collected over 14 tracks of varying length. In addition, the track

data was collected at two constant speeds of .5m/s and .3m/s using

1Preliminary results comparing the static estimator to state of the art
methods can be found in [7]. These results show that the proposed static
estimator is in fact superior to its nearest neighbor and maximum a posteri-
ori counterparts. In this light and due to space limitations, we refrain from
presenting further results on this topic.

2http://www.netstumbler.org
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Fig. 2. Map of the experimentation environment.

an ER1 robot. The orientation of the robot was kept the same during

training and testing to eliminate orientation effects on the results.

4.2. Results

Table 1 reports the RMSE accuracy of the four methods using the

3-sigma ellipse in the adaptive cases. It can be seen that the adaptive

radio map technique does in fact improve the positioning accuracy.

As previously mentioned, this is due to the spatial filtering of survey

point information and elimination of outliers in this set. By using

location predications as an additional feature, the proposed adaptive

method is able to resolve ambiguities caused by the many-to-many

RSS-position relation in the RSS space.

Table 1. RMSE results using the 3-sigma ellipse.

fixed survey points adaptive points

Static localization 2.14m 1.73m

Dynamic localization 1.92m 1.67m

We next consider the effect of the parameter g on the perfor-

mance of the adaptive methods. It is excepted that small values of

g degrade this performance as inaccuracies in the static preproces-

sor lead to exclusion of significant survey information. The erro-

neous estimates are then sent back to the estimator and coupled with

the small confidence region cause further deviation from the relevant

portion of the radio map. Indeed, the RMSE results depicted in Fig.3

demonstrate that for small g, the adaptive methods perform poorly.

For values of g around 3, the adaptive methods show significant

improvement over the other four methods as an appropriate confi-

dence interval results in selection of the correct portion of the radio

map. As the value of g increases and the confidence ellipse grows,

the number of included survey points increases and the performance

of the adaptive methods converge to that of nonadaptive techniques

that include the entire radio map.

5. CONCLUSION

This paper has proposed a dynamic localization solution based on

adaptive radio maps. Location predictions from a dynamic tracker

are used to narrow down the positioning problem to a subset of

possible locations in the environment. The results presented herein
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Fig. 3. Position accuracy for the four methods as a function of size

of the confidence ellipse.

demonstrate that such a method can in fact lead to significant im-

provements in terms of positioning accuracy.
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