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ABSTRACT

In this paper, we propose separable lattice hidden Markov models,
in which multiple hidden state sequences interact to model the ob-
servation on a lattice. The proposed model can be efficiently ap-
plied for modeling images, image sequences, 3-D object models and
higher dimensional applications, due to the composite structure of
Markov chains which reduces the complexity while retaining good
properties for multi-dimensional data. In case of 2-D lattices, the
proposed model performs an elastic matching in both horizontal and
vertical directions; this makes it possible to model not only invari-
ances to the size and location of an object but also nonlinear warp-
ing in each dimension. We present a training algorithm for separa-
ble lattice HMMs based on a variational approximation. Moreover,
the deterministic annealing EM (DAEM) algorithm was applied to
the variational algorithm for separable lattice HMMs. Face recogni-
tion experiments on the XM2VTS database show that the proposed
model has good properties for face image modeling.

1. INTRODUCTION

Hidden Markov Models (HMMs) have been very successfully ap-
plied to numerous problems of one-dimensional data, particularly
in speech recognition. Many attempts to use HMMs for modeling
multi-dimensional data (e.g., images, image sequences, and 3-D ob-
ject models) have also been presented. However, their extension to
multi-dimensions leads to an exponential increase in the amount of
computation required for the regular Baum-Welch and Viterbi algo-
rithms. To reduce the computational complexity, we have to con-
strain the model structure by limiting the number of possible align-
ments and by assuming independence between hidden variables.

In previous work [1], planar hidden Markov models were de-
veloped, in which the probability of a particular state depends only
on the state at adjacent observations in both horizontal and verti-
cal directions. However, the computational complexity of planar
HMMs is still exponential. On the other hand, a more restricted
structure, pseudo 2-D HMMs (or embedded HMMs) have been pro-
posed [2] and applied to many image applications. A pseudo 2-D
HMM has the states of a superior HMM in the horizontal direc-
tion, called super-states, and each super-state has a one-dimensional
HMM in the vertical direction instead of a probability density func-
tion. However, the state alignments of consecutive observation lines
in the vertical direction are calculated independently of each other
and this hypothesis does not always hold true in practice.

In this paper, we propose separable lattice hidden Markov mod-
els, in which multiple hidden state sequences interact to model the
observation on a lattice. The proposed model can be efficiently ap-
plied for modeling images, image sequences, 3-D object models and
higher dimensional applications. In the case of 2-D lattices, the pro-
posed model performs an elastic matching in both horizontal and

vertical directions; this makes it possible to model not only invari-
ances to the size and location of an object but also nonlinear warp-
ing in each dimension. The parameters of a separable lattice HMM
can be estimated via the expectation maximization (EM) algorithm
for approximating the Maximum Likelihood (ML) estimate. Even
though the constrained structure of separable lattice HMMs reduces
the complexity of EM algorithm, the exact expectation step is still
computationally intractable due to the dependency between Markov
chains.

To derive a feasible problem, we applied the variational EM al-
gorithm to separable lattice HMMs and present a structure approxi-
mation in which the hidden state sequences are decoupled. In order
to represent complex data structures, a number of model structures
on HMMs have been considered, e.g., factorial hidden Markov mod-
els [3]. These models have additional structural assumptions that are
not available within the simple HMM framework, however the es-
timation of model parameters becomes computationally intractable.
In recent years, variational methods have been used for approximat-
ing maximum likelihood estimation in such probabilistic graphical
models [4], [5]. Variational methods approximate the posterior dis-
tribution over the hidden variables by a tractable distribution and
provides a lower bound on the log-likelihood which is guaranteed to
increase on each iteration.

The convergence point of the EM algorithm might depend on
the initial model parameters. Moreover, in the variational EM algo-
rithm for separable lattice HMMs, decoupled posterior distributions
are updated individually based on the other distributions which are
unreliable at an early stage of training. To overcome this problem,
we applied the deterministic annealing EM (DAEM) algorithm [6] to
the variational algorithm for separable lattice HMMs. We also show
that the DAEM algorithm can improve the performance of separable
lattice HMMs in face image recognition experiments using training
data with variations in size and location.

In the following section, we define the structure of separable lat-
tice HMMs. In Section 3, we present the exact EM algorithms for the
proposed model and apply the variational approximation in Section
4. In Section 5, we present the application of the DAEM algorithm
to the proposed model. In Section 6, we describe experiments of
face recognition on the XM2VTS database and finally conclude in
Section 7

2. SEPARABLE LATTICE HMMS

We define separable lattice hidden Markov models for modeling
multi-dimensional data. The observations of M -dimensional data,
e.g., pixel values of an image and image sequence, are assumed to
be given on a M -dimensional lattice:

O = {Ot |t = (t(1), . . . , t(m), . . . , t(M)) ∈ T } (1)
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where t denotes the coordinates of the lattice in M -dimensional
space T and t(m) = 1, . . . , T (m) is the coordinate of the m-th di-
mension. The observation Ot is emitted from the state indicated by
the hidden variable St ∈ K . The hidden variables St ∈ K can take
one of K =

Q
m K(m) states which assumed to be arranged on an

M -dimensional state lattice K = {1, . . . , K}. In other words, a set
of hidden variables {St |t ∈ T } represents a segmentation of obser-
vations into the K states and each state corresponds to a segmented
region in which the observation vectors are assumed to be generated
from the same distribution. Since the observation Ot is dependent
only on the state St as in ordinary HMMs, dependencies among hid-
den variables determine the properties and the modeling ability of
multi-dimensional HMMs. To reduce the number of possible state
sequences, we constrain the hidden variables to be composed of M
Markov chains:

S = {S(1), . . . , S(m), . . . , S(M)} (2)

S(m) = {S(m)
1 , . . . , S

(m)

t(m) , . . . , S
(m)

T (m)} (3)

where S(m) is the Markov chain along with the m-th coordinate and
S

(m)

t(m) ∈ {1, . . . , K(m)}. In separable lattice HMMs, the composite
structure of hidden variables is defined as the product of hidden state
sequences:

St = (S
(1)

t(1)
, S

(2)

t(2)
, . . . , S

(M)

t(M)) (4)

This means that in the 2-D case, the segmented regions of observa-
tions are constrained to be rectangles and this allows an observation
lattice to be elastic in both vertical and horizontal directions. Using
this structure, the number of possible state sequences can be reduced

from {Q
m K(m)}

Q
m T (m)

to
Q

m{K(m)}T (m)
.

The joint probability of observation vectors O and hidden vari-
ables S can be written as

P (O, S|Λ)

= P (O|S, Λ)

MY
m=1

P (S(m)|Λ) (5)

=
Y

t

P (Ot |St , Λ) ×

MY
m=1

2
4P (S

(m)
1 |Λ)

T (m)Y

t(m)=2

P (S
(m)

t(m) |S(m)

t(m)−1
, Λ)

3
5 . (6)

Model parameters of a separable lattice HMM are summarized as
follows:

1) Π(m) = {π(m)
i |1 ≤ i ≤ K(m)}: the initial state probability

distribution, where π
(m)
i = P (S

(m)
1 = i|Λ) is the probability

of state i at t(m) = 1 in the m-th state sequence.

2) A(m) = {a(m)
ij |1 ≤ i ≤ K(m), 1 ≤ j ≤ K(m)}: the

transition probability matrix, where a
(m)
ij = P (S

(m)

t(m) = j|
S

(m)

t(m)−1
= i|Λ) is the transition probability from state i to

state j in the m-th state sequence.

3) B = {bk(Ot)|k ∈ K}: the output probability distribu-
tions, where bk(Ot) = P (Ot |St = k, Λ) is the proba-
bility of observation vector Ot at the state k on the state
lattice K and assumed to be a single Gaussian distribution:
P (Ot |St = k, Λ) = N (Ot ; µk ,Σk) where µk and Σk are
the mean vector and the covariance matrix, respectively. Note
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Fig. 1. Separable lattice HMM with two Markov chains

that separable lattice HMMs have
Q

m K(m) Gaussians di-
rectly as the parameters on a lattice unlike factorial HMMs1.

Using shorthand notation, a separable lattice HMM is defined as Λ =
{Λ(1), . . . , Λ(M), B}, Λ(m) = {Π(m), A(m)}.

The separable 2-D lattice HMMs can be applied to image mod-
eling and perform an elastic matching in both horizontal and vertical
directions by assuming the transition probabilities with left-to-right
and top-to-bottom topologies. Although the structure of the pro-
posed model cannot represent rotations of images, it is still useful
for image detection and the framework makes it possible to achieve
size- and location-invariant image recognition. Furthermore, the
proposed model can be used for 3-D and higher dimensional appli-
cations, e.g., image sequences, 3-D object models, etc., due to the
composite structure which reduces the complexity of the algorithm
while retaining the good properties for modeling multi-dimensional
data.

Figure 1 shows the graphical representations of separable lattice
HMMs for two-dimensional data. Although the embedded HMMs
can be assumed to have different prior transition distributions for
each super states, this figure shows the models which have the same
transition distribution for all embedded state sequences, i.e., there is
no arc from a super state to embedded states. The main difference
between the proposed model and the embedded HMMs is that sepa-
rable lattice HMMs have a symmetric structure in vertical and hor-
izontal directions. Therefore, there is no need to determine which
direction of two-dimensional data should be modeled as the super
states or the embedded states. If the hidden variables of the embed-
ded states are also shared for all observation sequences, an embed-
ded HMM becomes equivalent to a separable 2-D lattice HMM. In
the embedded HMMs, the exact EM algorithm can be performed in
practice, because the state transitions of an embedded state sequence
depend only on the corresponding super state. However, in the sepa-
rable 2-D lattice HMMs, the state transitions of one direction depend
on the all the hidden variables of the other direction; therefore the
exact EM algorithm becomes infeasible.

1Factorial HMMs have
P

m K(m) Gaussians along with Markov chains
and they contribute linearly to the output probability distributions.
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3. EM ALGORITHM

The parameters of separable lattice HMMs can be estimated via the
expectation maximization (EM) algorithm which is an iterative pro-
cedure for approximating the Maximum Likelihood (ML) estimate.
This procedure maximizes the expectation of the complete data log-
likelihood so called Q-function:

Q(Λ, Λ′) =
X

S

P (S | O, Λ) ln P (S, O | Λ′) (7)

The likelihood of the training data is guaranteed to increase by in-
creasing the value of the Q-function:

Q(Λ, Λ′) ≥ Q(Λ, Λ) ⇒ P (O | Λ′) ≥ P (O | Λ) (8)

The EM algorithm starts with some initial model parameters and
iterates between the following two steps:

(E step) : compute Q(Λ(k), Λ)

(M step) : Λ(k+1) = arg max
Λ

Q(Λ(k), Λ)

where k denotes the iteration number. The E-step computes the pos-
terior probabilities over the hidden states while keeping model pa-
rameters Λ fixed to current values. The M-step uses these proba-
bilities to calculate the expected log-likelihood of the training data
as function of the parameters and maximize the Q-function with re-
spect to model parameters Λ. In this procedure, each step increases
the value of the Q-function; hence the likelihood of the training
data is also guaranteed to increase or remain unchanged on each
iteration. The complexity of the exact E-step can be reduced to

O({K(n)}2T (n) Q
m�=n{K(m)}T (m)

) , however, it is still infeasi-
ble.

4. VARIATIONAL EM ALGORITHM

Variational methods have been used for approximate maximum like-
lihood estimation in probabilistic graphical models with hidden vari-
ables. We present a structure approximation in which the hidden
state sequences are decoupled. The variational methods approximate
the posterior distribution over the hidden variables by a tractable dis-
tribution. Any distribution Q(S)2 over the hidden variables defines
a lower bound on the log-likelihood

ln P (O|Λ) = ln
X

S

P (S, O|Λ)

= ln
X

S

Q(S)
P (S, O|Λ)

Q(S)

≥
X

S

Q(S) ln
P (S, O|Λ)

Q(S)

=
X

S

Q(S) ln P (S, O|Λ) −
X

S

Q(S) ln Q(S)

= F(Q, Λ) (9)

where we have applied Jensen’s inequality. The difference between
ln P (O|Λ) and F is given by the Kullback-Leibler divergence be-
tween Q(S) and the posterior distribution of the hidden variables

2The notation of distribution Q(S) over states is distinct from the nota-
tion of Q-function Q(Λ, Λ′).

P (S|O, Λ). Since the true log-likelihood ln P (O|Λ) is indepen-
dent of Q(S), maximizing the lower bound F is equivalent to min-
imizing the Kullback-Leibler divergence. If we allow Q(S) to have
complete flexibility then we see that the optimal Q(S) distribution
is given by the true posterior P (S|O, Λ), in the case where the KL
divergence is zero and the bound becomes exact. In order to yield
a tractable algorithm, it is necessary to consider a more restricted
structure of Q(S) distributions. Given the structure, the parameters
of Q(S) are varied so as to obtain the tightest possible bound, which
maximizes F .

The variational EM algorithm iteratively maximizes F with re-
spect to the Q and Λ holding the other parameters fixed:

(E step) : Q(k+1) = arg max
Q∈C

F(Q, Λ(k))

(M step) : Λ(k+1) = arg max
Λ

F(Q(k+1), Λ)

where C is the set of constrained distributions. The maximum in the
M-step is obtained by maximizing the term

P
S Q(S) ln P (S, O|Λ)

in (9), since the entropy of Q(S) does not depend on model param-
eters Λ. In this procedure, the lower bound F is guaranteed to in-
crease instead of the value of the Q-function.

The complexity and the approximation property of the varia-
tional EM algorithm are dependent on a constraint to the posterior
distribution Q(S) and it should be determined for each structure of
graphical models. Here we consider a constrained family of vari-
ational distributions for separable lattice HMMs by assuming that
Q(S) factorizes over subset S(m) of the variables in S, so that

Q(S) =

MY
m=1

Q(S(m)) (10)

where
P

S(m) Q(S(m)) = 1, m = 1, . . . , M . The complexity of
E-step with the variational approximation becomes O(M

Q
m K(m)

T (m)). Note that the computational cost can be significantly reduced
from the exact EM algorithm to polynomial time complexity.

5. VARIATIONAL DAEM ALGORITHM

The EM algorithm has the problem that the solution converges to
a local optimum and the convergence point depends on the initial
model parameters. In the variational EM algorithm for separable
lattice HMMs, the decoupled posterior distributions are updated in-
dividually based no only on the initial model parameters but also on
the other distributions, both of which are unreliable at an early stage
of training. To avoid this problem, we apply the DAEM algorithm
to the algorithm derived in the previous section and show that the
expectations with respect to the decoupled posterior distributions for
the DAEM can also be calculated by the forward-backward proce-
dure.

In the DAEM algorithm, the problem of maximizing the log-
likelihood is reformulated as minimizing the thermodynamic free
energy defined as

Fβ = − 1

β
ln

X
S

P (S, O|Λ)β (11)

where 1/β called the “temperature” and maximizing Fβ(Qβ , Λ)
with a fixed temperature can be interpreted as the approach to ther-
modynamic equilibrium. In the algorithm, the temperature is gradu-
ally decreased and the function is deterministically optimized at each
temperature. The procedure of the DAEM algorithm can be summa-
rized as follows:
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1 Give an initial model and set β = βmin.

2 Iterate EM-steps with β fixed until Fβ converged:
(E step) : arg max

Qβ∈C
Fβ(Qβ , Λ(k))

(M step) : Λ(k+1) = arg max
Λ

Fβ(Q
(k+1)
β , Λ)

3 Increase β.

4 If β > 1, stop the procedure. Otherwise go to step 2.

where 1/βmin is an initial temperature and should be chosen as a
high enough value that the EM-steps can achieve a single global
maximum of Fβ . At the initial temperature, the entropy of Qβ(S) is
intended to be maximized rather than the Q-function (the first term
of equation (11)); therefore Qβ(S) takes a form nearly uniform dis-
tribution. While the temperature is decreasing, the form of Qβ(S)
changes from uniform to the original posterior and at the final tem-
perature 1/β = 1, the negative free energy Fβ becomes equal to the
lower bound F , accordingly the DAEM algorithm agrees with the
original EM algorithm.

6. EXPERIMENTS

In order to demonstrate the modeling ability of separable lattice
HMMs, face recognition experiments on the XM2VTS database [7]
were conducted. We prepared 8 images of 100 subjects; 7 images are
used for training and 1 image for testing. Face images of grayscale
64 × 64 pixels were extracted from the original images. In this pro-
cess, two sets of data were prepared:

• “dataset1”: the size- and location-normalized data.

• “dataset2”: the data with size and location variations. The
sizes and locations were randomly generated by Gaussian dis-
tributions almost within the location shift of 40 × 20 pixels
from the center point and the range of size from 500× 500 to
600 × 600 with fixed aspect.

The pixel intensity of images were used as the feature vectors, and
modeled by a separable 2-D lattice HMM with 32×32 states, single-
Gaussian distributions. The state sequences S(1) and S(2) corre-
spond to horizontal and vertical directions, respectively. The transi-
tion probabilities for each state sequence are assumed to be a left-
to-right and top-to-bottom no skip topology. The initial model was
constructed from a linear segmentation for each observation lattice.

To confirm the effectiveness of separable lattice HMMs, we con-
structed other models summarized as follows:

• “Gauss”: 64×64 dimensional Gaussian distributions without
state transitions.

• “Emb-V,” “Emb-H”: the embedded HMMs which have super-
states in the vertical and horizontal direction, respectively.

• “SL-EM, ” “SL-DA”: the separable 2-D lattice HMMs which
are trained with variational EM algorithm and variational
DAEM algorithm, respectively.

Figure 2 shows the visualized mean vectors of Gaussian distributions
and the recognition rates for each model. Comparing “Gauss” be-
tween two datasets, the mean vector of “dataset2” becomes blurred
than that of “dataset1”, and the recognition performance was de-
graded by the variations. Since “Emb-V” and “Emb-H” ignore the
correlation between embedded state sequences, the geometric conti-
nuity was not preserved in the mean vectors. On the other hand, “SL-
EM” achieved better results than “Emb-V” and “Emb-H” in the both
datasets. Although the mean vector of “SL-EM” keeps the continuity

dataset Gauss Emb-V Emb-H SL-EM SL-DA

dataset1

60% 69% 62% 80% 84%

dataset2

17% 56% 58% 70% 76%

Fig. 2. The mean vectors of the output probability distributions and
the recognition rates for each model

of horizontal and vertical directions in “dataset1,” that of “dataset2”
is distorted around the center of the face after the re-estimation be-
cause of the inaccuracy of the initial estimate. However, “SL-DA”
improves the performance of “SL-EM” in the both datasets due to
reducing the dependency on initial models.

7. CONCLUSION

We propose separable lattice hidden Markov models for modeling
the observations on a multi-dimensional lattice and presented a train-
ing algorithm based on a variational approximation. The face recog-
nition experiments were performed on the XM2VTS database. In
the experiments, the proposed model achieves better results than the
embedded HMMs. This result suggests that the separable 2-D lattice
HMMs are useful for applications of image detection and recogni-
tion. Furthermore, the DAEM algorithm improves the performance
of the proposed model. Extensions to more flexible models will be
future works.

ACKNOWLEDGMENTS
We would like to thank Tetsuya Nunome for support of this research.

8. REFERENCES

[1] E. Levin, and R. Pieraccini, “Dynamic Planar Warping for opti-
cal Character Recognition,” Proc. ICASSP, vol.3, pp.149-152,
1992.

[2] S. Kuo, and O.E. Agazzi, “Keyword Spotting in Poorly Printed
Documents Using Pseudo 2-D Hidden Markov Models,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol.16, no.8,
pp.842-848, 1994.

[3] Z. Ghahramani, and M.I. Jordan, “Factorial Hidden Markov
Models,” Machine Learning, vol.29, pp.245-273, 1997.

[4] M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul,
“An introduction to Variational Methods for Graphical Mod-
els,” Machine Learning, vol.37, pp.183-233, 1999.

[5] Z. Ghahramani, “On Structured Variational Approximations,”
University of Toronto Technical Report, CRG-TR-97-1, 1997,
revised 2002.

[6] N. Ueda, and R. Nakano, “Deterministic Annealing EM Algo-
rithm,” Neural Networks, vol.11, no.2, pp.271-282, 1998.

[7] K. Messer, J. Mates, J. Kittler, J. Luettin, and G. Maitre,
“XM2VTSDB: The Extended M2VTS Database,” Audio-
and Video-Based Biometric Person Authentication, pp.72-77,
1999.

V ­ 740


