
OFFERING PATTERN MINING USING HIGH YIELD PARTITION TREES

Jianying Hu Aleksandra Mojsilovic

IBM T.J. Watson Research Center
1101 Kitchawan Road, Route 134, Yorktown Heights, NY 10598

{jyhu, aleksand}@us.ibm.com

ABSTRACT
Despite the wide use of data mining techniques in client seg-
mentation and market analysis applications, so far there have
been no algorithms that allow for the discovery of strategi-
cally important combinations of products (or offerings) – the
ones that have the highest impact on the performance of the
company. We present a novel algorithm for analyzing a multi-
product environment and identifying strategically important
combinations of offerings with respect to a predefined crite-
rion, such as revenue impact, profit impact, inventory turnover
etc. In contrast to the traditional association rule and fre-
quent item mining techniques, the goal of the new algorithm
is to find segments of data, defined through combinations of
products (rules), which satisfy certain conditions as a group.
We present a novel algorithm to derive specialized partition
threes, called High Yield Partition Trees, which lead to such
segments, and investigate different splitting strategies. The
algorithm has been tested on real-world data, and achieved
very good performance.

1. INTRODUCTION

Today the strategic and marketing decisions of most compa-
nies depend on customer segmentation, i.e. understanding
the characteristics and behavioral patterns of their customers.
As more and more companies diversify their operations and
expand the spectrum of their products and services, it is be-
coming critical to understand cross-cohesion among differ-
ent products or services (referred to collectively as offerings
hence forth) and identify natural groupings that were not ex-
pected to exist or have not been addressed in the development
phase of each individual offering. In particular, companies
are interested in identifying groups of offerings that have the
most significant impact on the their bottom line. Such knowl-
edge could guide strategic decisions at the top levels of cor-
poration, optimize the behavior of the entire enterprise by ex-
ploiting the linkages between different brands, institute new
offerings by bundling the discovered combinations of offer-
ings, and even open up new markets and new opportunities
driven by the identified relationships.

This need gives rise to a new opportunity for pattern recog-
nition as a support tool in strategic decision making process.

The problem of identifying offering groups that collectively
account for a significant portion of revenue (or other quantita-
tive measures such as profit, marketing cost, etc.) is quite dif-
ferent from the problems addressed by the traditional market
segmentation techniques, or so called ”market basket” analy-
sis techniques, because the latter only attempt to identify of-
ferings that are frequently bought together with no regard to
their total revenue contribution.

In this paper we present a novel algorithm for analyzing
a multi-product environment and identifying “strategic offer-
ings”, (i.e. the combinations of offerings which represent sig-
nificant amount of companys total revenue) using a new type
of binary partition tree called High Yield Partition Tree.

2. RELATED WORK

There has been much work on techniques for “market bas-
ket” analysis in the data mining community. In particular,
much focus has been given to fast algorithms for association
rule mining and the related problem, frequent item set min-
ing [1, 2, 3]. The former aims to discover rules such as “30%
customers who bought A and B also bought C”, while the lat-
ter aims to identify patterns such as “20% of all transactions
contain A, B and C”. The offering pattern mining problem we
consider is different, since unlike former approaches we con-
duct “rule-discovery” not only with respect to the individual
attributes, but also with respect to the overall criterion for the
mined set. We are interested in patterns such as “offerings
A, B and C account for 80% of revenue from customers who
bought all three”. More significantly, we aim to find groups
of such patterns that combined account for a significant por-
tion of the total revenue from all clients. Clearly, this is not a
mere extension of the market basket analysis problem and an
entirely new approach is required.

Binary partition trees have also been extensively used be-
fore, particularly in machine learning in the form of regres-
sion/classification/decision trees [4, 5], and in image analysis
for image segmentation [6]. In both cases, the goal of par-
titioning is to identify homogeneous segments of data, with
respect to some characteristics of individual data elements or
image objects (i.e., belonging to the same class, having sim-
ilar color or texture, etc.). In contrast, in the offering pat-

V ­ 7331­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

tern mining problem, the goal of partitioning is to identify
segments of data that satisfy certain condition as a group.
Furthermore, we are interested in finding partitions that com-
bined satisfy certain criterion. As will be shown later, these
different goals lead to very different strategies for both tree
growing and pruning.

3. PROBLEM DEFINITION

Let C = c1, c2, . . . , cN represent a set of clients and O =
o1, o2, · · · , oM a set of offerings. Each client ci is repre-
sented by a vector Ri = [ri,1, ri,2, . . . , ri,M] where ri,j is
the revenue from client ci on offering oj . An offering pat-
tern is a set of conditions represented as an integer vector
P = [p1, p2, . . . , pM] where for each component pi, a value
of 1 indicates non-zero revenue from offering oj , −1 indi-
cates zero revenue, and 0 indicates “don’t care”. A client ci

is said to satisfy a pattern P if it satisfies the following two
conditions:

rij > 0,∀j|pj = 1; (1)

and
rij = 0,∀j|pj = −1. (2)

Given a pattern Pk, the subset of C which consists of all
clients that satisfy Pk is called the subscription set of Pk and
represented as Ck = {ck1, ck2, . . . , cknk

}. The set revenue of
Ck, denoted R(Ck), is simply the sum of all revenues from all
clients in the subset. The in-pattern revenue of Ck is the sum
of revenues corresponding to the 1 components in pattern Pk:

Rp(Ck) =
nk∑

i=1

M∑

j=1

pkj × rki,j . (3)

A pattern Pk is called a defining pattern if it satisfies
Rp(Ck)/R(Ck) ≥ σ where σ is a high ratio (e.g., over 0.8).
It is called a Significant Defining Pattern (SDP) if it further
satisfies: R(Ck)/R(C) ≥ γ where γ is a lower bound (e.g.,
0.01). SDPs are particularly useful in offering portfolio anal-
ysis, since each SDP accounts for a significant portion of the
total revenue of the represented clients, and can thus be con-
sidered to define the common purchasing behavior of this sub-
set of clients. At the same time, the subscription set of each
pattern is significant in the sense that they collectively repre-
sent a significant portion of total revenue.

Given a client set C and the associated revenue vectors,
the goal of offering pattern mining is to identify a small set
of SDPs whose combined in-pattern revenue is a significant
portion of the total revenue of C. To avoid multiple count-
ing of revenue, it is further required that the patterns result in
non-overlapping subscription sets. However, the union of all
subscription sets does not have to contain all clients. We shall
refer to any set of non-overlapping SDPs as a pattern set for
short.

For any given data, there likely exist many different pattern
sets. In the trivial case, the patterns derived directly from the
revenue vectors of clients with significant revenues are them-
selves SDPs, and together form a pattern set. However, this
trivial pattern set is likely very large and not very interesting
because it does not provide any insight as to the grouping of
either clients or offerings. What we are interested in are pat-
tern sets that include as few patterns as possible while at the
same time represent as large a portion of the total revenue as
possible. Thus, the quality of a pattern set is measured by
two criteria: yield, which is defined as the ratio between total
in-pattern revenue and total revenue, and size, representing
the number of patterns in the set. Note that these measures
are clearly data dependent and can only be used to compare
pattern sets derived from the same data.

The goal of offering pattern mining can now be restated as:
for any given size, identify the pattern set of the specified size
that has the highest yield. Ideally, we would like to examine
all possible pattern sets and compare them using the above
two criteria. However, this presents a complex combinatorial
problem with a large search space that quickly becomes in-
tractable as M increases. Thus, for offering pattern mining to
be of practical value we need to find efficient algorithms that
lead to suboptimal and yet useful solutions.

4. HIGH YIELD PARTITION TREE

Because of the non-overlapping property, identifying the
SDPs of interest is equivalent to identifying clusters of clients
where clients in each cluster all satisfy a particular pattern.
One efficient way to represent this problem is to use a binary
partition tree, where each tree node represents a particular pat-
tern and includes all of its subscribing clients. In this section
we present a novel algorithm to derive specialized partition
trees that lead to pattern sets with high yields. We call these
trees High Yield Partition Trees.

The tree is initialized by assigning all clients to
the root node, representing the most general pattern:
[pi = 0; 1 ≤ i ≤ M]. We now pick an offering oj using a
particular offer selection criterion (which will be discussed
in detail later) and partition the clients into two groups, those
with revenue from oj and those without. The first group is
assigned to the left child of the root, representing the pat-
tern [pj = 1; pi = 0 for i �= j] and the second group is as-
signed to the right child of the root, representing the pattern
[pj = −1; pi = 0 for i �= j]. This “splitting” procedure is re-
cursively carried out at each node, producing more and more
specific patterns and partitioning the clients into smaller and
smaller groups. As the patterns get more specific, the in-
pattern revenue ratio Rp(Ck)/R(Ck) becomes larger while
the set revenue R(Ck) becomes smaller. At some point, each
leaf node in the tree will satisfy at least one of the follow-
ing two conditions: 1) R(Ck) < γ, when the node becomes
insignificant, and 2) Rp(Ck)/R(Ck) > σ, when the node be-

V ­ 734

comes a defining node.
The recursive procedure stops at a node when the first con-

dition is reached, because the offsprings of an insignificant
node are also insignificant and thus not of interest.

The situation is more complex when the second condition
is reached. While we could stop here since an SDP has been
found, splitting further could potentially produce more spe-
cific patterns that lead to higher in-pattern revenue. The strat-
egy we have adopted is as follows. After an offering has been
chosen using the selection criterion, the corresponding poten-
tial children are examined. If both children are defining and
significant, by definition their combined in-pattern revenue is
larger than the parent’s in-pattern revenue, thus both nodes are
created and each is subjected to the recursive splitting proce-
dure again. A child that is either non-defining or insignificant
is not created. If only one child is defining and significant,
then this child is created only if its in-pattern revenue is larger
than the parent’s. This strategy insures two properties of the
tree. The first property is continuity: any path of defining
nodes is continuous, i.e., a child of a defining node is also a
defining node. The second property is monotonicity: the to-
tal in-pattern revenue of the child/children of a defining node
is always larger than the parent’s in-pattern revenue. As will
become clear later, both properties are important in the prun-
ing stage. The strategy also makes intuitive sense: we only
continue splitting when it results in a larger total in-pattern
revenue and thus a higher yield.

When the above recursive splitting procedure is completed,
all insignificant leaves are removed. The remaining leaves
each represent an SDP and together form a pattern set that
has the highest possible yield for the chosen offering selection
criterion. However, it may very well contain more patterns
than the desired size, thus a pruning procedure is required to
“trim” the tree to the desired size.

For pruning purpose, we identify a class of nodes called
fringe nodes. Each fringe node has one or two associated
pruning operations, with each operation reducing the size of
the pattern set by one and incurring a loss of total in-pattern
revenue.

A defining node is a fringe node if there are exactly two
leaves in the subtree rooted at the node. The pruning opera-
tion at such a node is to remove all of its offsprings and the in-
curred loss is the difference between the combined in-pattern
revenue of the two leaves minus the in-pattern revenue of the
fringe node. The effect of this pruning operation is to replace
two SDPs with one ancestor SDP.

A non-defining node is a fringe node if it has at least one
leaf child. In this case there is a pruning operation associated
with each leaf child, which is simply to remove the child with
the incurred in-pattern revenue loss being the in-pattern rev-
enue of the child. The effect of this pruning operation is to
remove one SDP directly from the set.

The pruning procedure is carried out iteratively. During
each iteration, all fringe nodes and the associated pruning op-

erations are identified. The operation with minimum incurred
in-pattern revenue loss is selected and carried out. Finally any
newly “exposed” non-defining leaves are removed so that all
leaves again represent SDPs. The iteration stops when the
desired number of patterns is reached.

5. SPLITTING CRITERIA

We now turn our attention to the selection criterion used in
recursive splitting. We have investigated four different strate-
gies for offering selection. These strategies all attempt to
compute a “predicted gain” of in-pattern revenue for each of-
fering, and then select the offering with the highest predicted
gain. They differ in how the predicted gain is computed. In
the following description, the offerings corresponding to 0s in
the associated pattern at each node are called available offer-
ings, since they are the only ones still “available” for selec-
tion.

Yield Greedy (YG). For each available offering, the pre-
dicted gain is computed as the accumulated revenue
from all clients in the current set on this offering.

YG with one look ahead. For each available offering, per-
form a hypothetical split on this offering; then select of-
fering at each child using the YG criterion. Add revenues
from selected offering to the predicted gain as defined in
the first criterion.

Positive correlation. For each available offering, perform
a hypothetical split on this offering. For each of the re-
maining available offerings, compute the ratio between
the accumulated revenue on the left side and the accumu-
lated revenue on the right side. Select κ offerings with
highest ratio and add the left side accumulated revenues
of these offerings to the predicted gain as defined in the
first criterion.

Positive and negatived correlation. Starting with predicted
gain as defined in criterion 3, further select κ offerings
with lowest ratio and add the right side accumulated rev-
enue of these offerings.

The first strategy gives the most “short sighted” estimate
using only the offering itself. The other three strategies are
different attempts at “looking further” and thus getting po-
tentially better estimates. The second strategy hypothetically
performs one more level of split and aggregate the gain from
splits at both levels as the estimated gain. Strategies 3 and
4 are inspired by observations from domain experts that cer-
tain offerings have a pulling effect (positive correlation) or an
inhibiting effect (negative correlation). Thus strategy 3 incor-
porates positively correlated revenues and strategy 4 incorpo-
rates both positively and negatively correlated revenues into
the estimated gain. Parameter κ controls the number of corre-
lated revenues to incorporate and was set to 2 in our empirical
evaluations.

V ­ 735

Fig. 1. Yield-size plots for data set 1.

Fig. 2. Yield-size plots for data set 2.

6. EMPIRICAL EVALUATIONS

The high yield partition tree algorithm was evaluated using
the purchasing data for IBM corporation. We considered
two data sets. The first one contains 2003 revenue from 737
largest clients, broken across 21 products and lines of busi-
ness (i.e., offerings). The second set contains 2004 revenue
from 711 largest clients, broken across the same 21 offerings.
For each data set, a tree was built using each selection cri-
terion, then pruned one pattern at a time until there were 10
patterns left. Figures 1 and 2 show the yield vs. size curve for
pattern sets derived using the four selection criteria for each
data set.

As seen in the plots, the algorithm successfully identifies
pattern sets of varying sizes with yield up to 0.82. The four
different selection criteria lead to different tradeoffs between
yield and size at different points of the curve, and their com-
parison appears to be more or less consistent in both data sets.
When compared to the basic YG criterion, both “YG with
one look ahead” and “Positive and negative correlation” pro-
vide improved yield at smaller sizes (with the latter providing
more significant improvement) but perform worse at larger

sizes. On the other hand, the “positive correlation” criterion
performs slightly worse than YG at smaller sizes, while pro-
viding a small improvement at larger sizes.

Given that the selection criteria have complementary be-
haviors at different sizes, a reasonable strategy is to create
four different trees on a given data set, each using a different
criterion, then select the pattern set with the highest yield for
each given size. Using this strategy, the algorithm achieves a
yield of over 0.6 at 10 patterns and the highest yield of over
0.8 for both data sets.

7. CONCLUSIONS

Despite the wide used of data mining techniques in client seg-
mentation and market analysis applications, so far there have
been no algorithms that allow for the discovery of strategi-
cally important combinations of products or offerings, i.e. the
ones that account for the highest percentage of company rev-
enue (or other business performance metric), or have the high-
est impact on the company performance. We have presented
a novel algorithm for analyzing a multi-product environment
and identifying the offering combinations that have the high-
est impact on companys bottom line. Although we used the
revenue coverage as a clustering criterion, the algorithm can
be easily adapted to work by maximizing other more com-
plex objective functions. The algorithm has been tested on
real-world data with promising results. It is currently being
used as a decision support tool by the IBM Market Intelli-
gence to investigate impact and cohesion of different product
lines, and architect new market strategies.

8. REFERENCES

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules,” in Proc. of the 20th Int’l Conference
on Very Large Databases, Sept. 1994.

[2] W. Wang, J. Yang, and P.S. Yu, “Efficient mining of
weighted association rules (WAR),” in Proc. of SIGKDD
2000.

[3] F. Tao, F. Murtagh, and M. Farid, “Weighted associa-
tion rule mining using weighted support and significance
framework,” in Proc. of SIGKDD 2003.

[4] L.Breiman, J.J. Friedman, R.A. Olsen, and C.J. Stone,
Classification and regression trees, Wadsworth, Belmont,
CA, 1984.

[5] J.R. Quinlan, C4.5: Programs for machine learning,
Morgan Kauffman, 1993.

[6] P. Salembier and L. Garrido, “Binary partition tree as an
efficient representation for image processing, segmenta-
tion and information retrieval,” IEEE Trans. Image Pro-
cessing, pp. 561–575, April 2000.

V ­ 736

