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ABSTRACT

This paper deals with N -dimensional patterns that are represented
as points on the (N − 1)-dimensional simplex. The elements of
such patterns could be the posterior class probabilities for N classes,
given a feature vector derived by the Bayes classifier for example.
Such patterns form N clusters on the (N − 1)-dimensional simplex.
We are interested in reducing the number of clusters to N − 1 in
order to redistribute the features assigned to a particular class in the
N −1 simplex over the remaining N −1 classes in an optimal man-
ner by using a self-organizing map. An application of the proposed
solution to the re-assignment of emotional speech features classified
as neutral into the emotional states of anger, happiness, surprise, and
sadness on the Danish Emotional Speech database is presented.

1. INTRODUCTION

Self organizing maps (SOMs) establish a mapping from an input data
space R

N onto a two-dimensional array of nodes, which are associ-
ated with a weight vector w = (w1, w2, . . . , wN )T [1]. The nodes
(i.e., neurons) are organized on a map and they compete in order to
be activated by the input patterns. The SOM is one of the most pop-
ular neural networks. A number of 5384 papers related to the SOM
are listed in [2, 3] and cited at www.cis.hut.fi/research/
som-bibl/. Recent applications of the SOM include the classi-
fication of human body postures from images [4], the grouping and
visualizing human endogenous retroviruses [5], speaker clustering
[6], to mention a few.

This paper deals with N -dimensional patterns that are repre-
sented as points on the (N − 1)-dimensional simplex. The elements
of such patterns could be the posterior class probabilities for N
classes given a feature vector derived by the Bayes classifier for ex-
ample. Such patterns form clusters on the (N−1)-dimensional sim-
plex. We are interested in reducing the number of clusters to N − 1
in order to redistribute the features assigned into a particular class in
the N − 1 simplex according to the maximum a posteriori probabil-
ity principle, over the remaining N −1 classes in an optimal manner
by using the SOM. The motivations for the work reported in this pa-
per are the following: 1) There are facial expression databases such
as Action-Unit coded Cohn-Kanade database [7] where the neutral
emotional class is not represented adequately. Therefore, facial ex-
pression recognition experiments may not report classification rates
for the neutral emotional class as in [8]. For the emotional speech
databases, utterances are regularly classified as neutral. Accordingly,
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when the neutral class is not represented in one modality, it is dif-
ficult to develop multimodal emotion recognition algorithms (e.g.,
decision fusion algorithms). 2) Frequently, the ground-truth infor-
mation related to emotions that is provided by the human evaluators
is biased towards the neutral class. Therefore, the patterns classified
to this class might be redistributed among the non-neutral classes.
3) In general, although there are criteria that could be used for se-
lecting the number of clusters, such as the Akaike Information Cri-
terion (also known as Bayesian Information Criterion), the number
of clusters is frequently selected arbitrarily. Furthermore, the num-
ber of clusters can be either increased as in divisive algorithms or
decreased as in agglomerative algorithms. 4) Moreover, when two
clustering algorithms are to be compared (e.g. cluster validity), they
should refer to the same number of clusters. In this paper, we are in-
terested in reducing the number of clusters when the patterns belong
to simplex spaces.

The novelty of this paper is in the mathematical derivation of
the training algorithm for a SOM that reduces the number of clus-
ters by one on a simplex subspace. An application of the proposed
solution to the re-assignment of emotional speech features classified
as neutral into the emotional states of anger, happiness, surprise, and
sadness on the Danish Emotional Speech database is presented.

The rest of the paper is organized as follows. Section 2 describes
the mathematical derivation of the training algorithm. It is split into
two subsections; Subsection 2.1 studies the constrained optimization
problem for a single neuron and the generalization to a map is made
in subsection 2.2. Section 3 demonstrates an application of the devel-
oped theory to emotional speech classification. Finally, conclusions
are drawn in Section 4.

2. SOM TRAINING ALGORITHM FOR REDUCING THE
NUMBER OF CLUSTERS BY ONE ON SIMPLEX

SUBSPACES

2.1. Single neuron case

Let w ∈ R
N be the weight vector of a single neuron. This neu-

ron could be the best matching neuron to input pattern x. For the
sake of simplicity let us treat this neuron as an adaptive filter that
processes a random input vector x whose elements are the posterior
class probabilities derived by a classifier (i.e. the Bayes classifier)
given a feature vector z

x = (P (ω1|z), P (ω2|z), . . . , P (ωN |z))T (1)

where T is the transposition operator and ωi, i = 1, 2, . . . , N denote
the classes. Since the elements of x are probabilities they satisfy the
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properties

x1 ≥ 0, x2 ≥ 0, . . . , xN ≥ 0 (2)

1T x = 1 (3)

where 1 is the N × 1 vector of ones. Let us define the operator˜ that
is applied to any vector z ∈ R

N and discards its N th element, i.e.

z = (z1, z2, . . . , zN−1|zN )T =
(
z̃T |zN

)T

. (4)

We would like to update the weight vector w so that it minimizes the
mean-squared error between x and w

J = E
{||x − w||2} (5)

subject to the constraints

w1 ≥ 0, w2 ≥ 0, . . . , wN−1 ≥ 0 (6)

1̃T w̃ = 1. (7)

The optimization problem (5)-(7) is interpreted as follows. We re-
quire the reduced weight vector w̃ to lie on the (N −2)-dimensional
simplex, so that its elements could be treated as posterior class prob-
abilities. The input vectors x lie on an (N − 1) simplex and cre-
ate a cluster on this simplex. The optimization problem (5)-(7) en-
forces the random input vectors x to create a single cluster on the
(N − 2)-dimensional simplex whose parametric reference vector
is w̃. The aforementioned problem can be solved by applying the
steepest-descent algorithm and the theory of constrained optimiza-
tion [9].

By dropping the expectation operator and using the instanta-
neous squared error, the unconstrained minimization of (5) yields
a Least-Mean-Square (LMS) adaptation of w [1, 10, 11]

w(n + 1) = w(n) + β [x(n) − w(n)] (8)

where n denotes discrete time (i.e., iteration) and β is the adaptation
step-size. For the time-being the adaptation step-size is considered
to be constant.

Next, we elaborate on the constrained optimization problem (5)-
(7). The sum of the N elements of w, taking into account (7), be-
comes

1T w(n + 1) =
(
1̃T |1

) [
w̃(n + 1)
wN (n + 1)

]
= 1 + wN (n + 1) (9)

where wN (n +1) is the last element of w in the (n +1)th iteration.
By replacing (8) into (9) we obtain

1T w(n + 1) = 1 + wN (n + 1) = δ(n) (10)

wN (n + 1) = (1 − β)wN (n) = γ(n) (11)

with δ(n) = 1+γ(n). In the following, we drop the dependence on
n for notation simplicity. To minimize the instantaneous squared er-
ror (i.e., the objective function) subject to the equality constraint (10)
and the N−1 inequality constraints (6) we introduce the Lagrangian
function

L(w, λ, ξ̃) = ||x − w||2 − λ
(
1T w − δ

)
− ξ̃

T
w̃ (12)

where λ and ξ̃ are the Lagrange multipliers. By equating the gradient
of the Lagrangian function with respect to w with the zero vector we
obtain

w = x +
λ

2
1 +

1

2
[
ξ̃

0
]. (13)

The substitution of (13) into (10) yields

λ =
2

N

[
(δ − 1) − 1

2
1̃T ξ̃

]
. (14)

Let J = 1̃1̃T , I be the (N − 1) × (N − 1) identity matrix, and
Θ = J − NI. Putting (13) into the Lagrangian (12) and taking into
account the Kuhn-Tucker (KT) conditions [9], we obtain the Wolf
dual functional

W(ξ̃) =
(δ − 1)2

N
+

1

4N
ξ̃

T
Θξ̃ − ξ̃

T
(
x̃ +

δ − 1

N
1̃

)
(15)

that should be maximized in the nonnegative quadrant of ξi, i =
1, 2, . . . , N − 1. The solution of the aforementioned maximization
problem is given by

ξ̃ = 2NΘ−1

(
x̃ +

δ − 1

N
1̃

)
. (16)

2.2. Generalization for a map

Let d(x(n),wl(n)) denote a generic distance measure between an
input pattern x(n) and a neuron of the map wl(n). In this paper, d(·)
is the Euclidean distance. The index of the best matching neuron to
input pattern x(n) is given by

c(x(n)) = arg min
l
{d(x(n),wl(n))}, l = 1, 2, . . . , M (17)

where M is the number of neurons. Let the adaptation step-size and
the kernel function used in the map be merged in the term h̃cl(n)
[11]. When an input pattern is presented to the map at the nth iter-
ation, the following computations take place at the lth neuron of the
map:

Step 1: Determine δl(n):

δl(n) = 1 + (1 − h̃cl(n))wlN (n). (18)

Step 2: Determine the Lagrange multipliers for the inequalities ξ̃ (n):

ξ̃l(n) = 2NΘ−1

(
x̃(n) +

δl(n) − 1

N
1̃

)
. (19)

Step 3: Determine the Lagrange multiplier for the equality constraint
λ(n):

λl(n) =
2

N

[
(δl(n) − 1) − 1

2
1̃T ξ̃l(n)

]
. (20)

Step 4: Update the weight vector wl:

wl(n + 1) = x(n) +
λl(n)

2
1 +

1

2
[
ξ̃l(n)

0
]. (21)

3. EXPERIMENTAL RESULTS

The Danish Emotional Speech (DES) database [12] was used in or-
der to demonstrate the proposed training algorithm for a SOM that
is able to reduce the number of clusters by one on a simplex sub-
space. In particular, a SOM variant was trained to re-assign emo-
tional speech features classified as neutral into four emotional states,
namely hot anger, happiness, surprise, and sadness indicated by the
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Fig. 1. Class label assignment of the map neurons.

labels 1–4, respectively. The training algorithm was integrated with
the SOM Toolbox [14].

The input patterns x are posterior class probabilities of emo-
tional speech features for 5 emotional states, including the neutral
class. They were derived by applying the Bayes classifier that em-
ploys features optimally selected by the sequential floating forward
selection algorithm so that they minimize the classification error
[13]. The training set consists of patterns that are not classified as
neutral. However, the patterns do include the N th element xN =
P (ωN |z) that is the a posteriori probability the feature vector z to be
classified as neutral determined by the Bayes classifier. One pattern
is fed to the SOM at each iteration. The map topology is depicted
in Figure 1 where the class labels assigned to each neuron is also
indicated. The unlabeled neurons are not assigned enough patterns.

A number of 400000 iterations were needed for the training al-
gorithm to converge. To assess convergence, two measures were
employed, namely

J(l, n) =
1

n

n∑
n′=1

(
1̃T w̃l(n

′) − 1
)2

(22)

J ′(n) =
1

M

M∑
l=1

(
1̃T w̃l(n) − 1

)2

(23)

where M = 13× 9 = 117 is the number of map neurons. J(l, n) is
plotted for several iteration numbers n=1, 100000, 200000, 300000,
and 400000 in Figure 2. It is seen that J(l, n) admits values of
the order of 10−8 after 200000 iterations. The peaks in the plots
of Figure 2 show a periodic behavior. Their position corresponds
to the boundary neurons of the map. This fact can be explained
by taking into account the scanning order for computing the kernel
function between any neuron and the best matching neuron for an
input pattern [1] during training.

Figure 3 demonstrates that J ′(n) converges to a steady-state
value of the order 10−3. It should be noted that the generalization to
a map employs a variable equality constraint δ(n) and not a constant
δ as in the simple case of a single neuron. The plot in Figure 3 plays
the role of the learning curve of the training algorithm.

The neurons can be characterized as good, modest, and bad, de-
pending on the number of patterns they “win” during the competi-
tion. Let ν be the number of patterns a neuron wins. Let η = E{ν}
be the mean and σ =

√
var{ν} be the standard deviation of the ran-

dom variable ν for a neuron. The neuron under discussion is char-
acterized as good if it wins at least η + σ patterns and bad if it wins
less than η − σ patterns. Otherwise, it is characterized as modest.
Figure 4 depicts the category of each neuron. The red color indicates
the good neurons, the green color indicates the modest neurons, and
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Fig. 2. J(l, n) for several iteration numbers n versus the neuron
index l.
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Fig. 3. J ′(n) versus the iteration index n collectively for the map.

blue the bad ones. From this perspective, as can be noticed from the
top row of the map in Figure 4, 4 boundary neurons of the map are
bad, 3 are found to be modest, and only 2 are categorized as good.

Figure 5 plots the ensemble-averaged values of the weights for
a good neuron [10]. It is seen that each weight converges to a steady
state value and the sum of the 4 weights upon convergence equals
1. A very few number of weights, after the training is complete, are
found to be negative. As can be seen from Table 1, this happens
mostly for bad neurons. The situation is better for modest neurons,
and there is not any problem for the good neurons. Table 1 suggests

Table 1. Percentage of negative weights found for each neuron cat-
egory

Neuron cat-
egory

Percentage
(%)

Good 0.17
Modest 0.51
Bad 3.93

that we should use the sign of the Lagrange multipliers ξ̃l(n) as a
control mechanism to avoid negative weights during the optimiza-
tion.

In the test phase, the trained SOM variant was applied to unseen
patterns that were originally classified as neutral. Figure 6 shows
the percentage of neutral patterns that are re-assigned to each non-
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Fig. 4. Characterization of map neurons as good, modest,and bad
according to the number of patterns they win. (R: red, B: blue, G:
green)
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Fig. 5. Ensemble-averaged values of the weights for a good neuron.

neutral emotional class by the trained SOM variant. As can be seen,
surprise earns the majority of the neutral patterns, while anger is
found to be the least close to the neutral state.

4. CONCLUSIONS

A SOM that is able to reduce the number of clusters by one on
simplex subspaces has been proposed. The training algorithm for
such a SOM has been derived theoretically. The theoretical develop-
ments were successfully applied to re-assign emotional speech fea-
tures originally classified as neutral to four non-neutral emotional
classes in the DES database. The convergence properties of the de-
veloped SOM variant have been demonstrated by experiments. The
experimental results have validated the theoretical developments.
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