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ABSTRACT

A numerical algorithm is proposed to compute Cramér-Rao-
type bounds. The Cramér-Rao-type bounds are derived from
information matrices of marginals of the joint pdf of the sys-
tem at hand. The key ingredient is message-passing on a fac-
tor graph of the system. The method can be applied to a wide
class of estimation problems. As an illustration, the problem
of estimating the parameters of an AR model is considered.

1. INTRODUCTION

For many practical estimation problems, popular estimators
such as the maximum likelihood estimator (ML), the max-
imum a posteriori estimator (MAP) or the minimum mean
squared error estimator (MMSE) are infeasible. Therefore,
one often needs to resort to suboptimal techniques.
Suboptimal estimators are typically compared based on their
mean squared estimation error (MSE). However, the MSE
is not an absolute performance measure; in order to deter-
mine whether a suboptimal algorithm is close to optimal (in
terms of MSE), the MSE of the minimum mean squared error
(MMSE) estimator is required. Unfortunately, the minimum
achievable MSE can often not be computed (neither analyt-
ically, nor numerically), and one needs to resort to bounds
on the minimum achievable MSE, typically lower bounds. A
well-known family of such lower bounds are the Cramér-Rao-
type bounds.
For the estimation of parameters, a commonly used lower
bound for the MSE is the Cramér-Rao bound (CRB), given
by the inverse of the Fisher information matrix [1] [2] (“stan-
dard CRB”). The CRB has been computed in a wide variety
of contexts, ranging from communications (e.g., [3]), to sig-
nal processing (e.g., [4]) and beyond.
For some applications, a closed-form expression for the CRB
is available; in other applications, e.g., estimation in AR(MA)
models, the derivation of CRBs is involved. For example, the
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CRB has been derived for AR(MA)-models without obser-
vation noise [4], but for AR(MA)-models with observation
noise, the CRB seems to be intractable.

Van Trees derived an analogous bound to the CRB for random
variables, referred to as “Bayesian CRB” (BCRB) or “poste-
rior CRB” or “Van Trees bound” [1]. Rather surprisingly, far
less attention has been given to the BCRB than to the stan-
dard CRB. Tichavský et al. derived the BCRB for filtering in
state-space models with freely evolving state [5]. In recent
work [6], we have derived a message-passing algorithm to
compute BCRBs for general estimation problems.

In addition, so-called hybrid Cramér-Rao bounds have been
proposed [7]; they apply to the joint estimation of parameters
and random variables.

There are two general strategies to obtain Cramér-Rao-type
bounds for a given estimation problem. One may derive
Cramér-Rao-type bounds from the information matrix of the
joint probability density function (pdf) of the system at hand;
alternatively, one may derive such bounds from information
matrices of marginals of the joint pdf.

The information matrix of the joint pdf is often sparse since
the probability function at hand usually has structure, i.e., the
probability function often factors. In [6], we have shown how
this sparseness can be exploited to compute Cramér-Rao-type
bounds.

In this paper, we propose an algorithm to compute Cramér-
Rao-type bounds derived from information matrices of mar-
ginals of the joint pdf. It has been shown in [8] that Cramér-
Rao-type bounds obtained from information matrices of mar-
ginals are tighter than the corresponding bounds derived from
the information matrix of the joint pdf. Note that the informa-
tion matrix of a marginal is usually dense, in contrast to the
information matrix of the joint pdf. The proposed algorithm
is applicable to standard CRBs, BCRBs, and hybrid CRBs.

This paper is structured as follows. First, we review Cramér-
Rao-type bounds. Then, we present our algorithm to compute
Cramér-Rao-type bounds. As an illustration, we consider es-
timation in state-space models. At the end of the paper, we
provide a numerical example.
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2. REVIEW OF CRAMÉR-RAO-TYPE BOUNDS

We briefly review the standard CRB and the BCRB. We refer
to [7] for more information on hybrid CRBs.

2.1. Standard Cramér-Rao bound

We start by introducing our notation. Let Θ = (Θ1, . . . ,Θn)T

be a parameter vector, and let Y = (Y1, . . . , YN )T be a real
random vector (the extension to complex random vectors is
straightforward). Suppose that p(y|θ) is the probability den-
sity function (pdf) of Y , which is parameterized by Θ. We
consider the problem of estimating Θ from an observation
vector y = (y1, . . . , yN)T . Let the function θ̂(y) be an es-
timator of Θ based on the observation y. We define the error
matrix E(θ) as:

E(θ)
�

= EY |Θ

[
(θ̂(Y ) − θ)(θ̂(Y ) − θ)T

]
. (1)

The Fisher information matrix F(θ) is given by [1][2]:

Fij(θ)
�

= EY |Θ

[
∇θi

log p(Y |θ)∇T
θj

log p(Y |θ)
]
, (2)

where Fij(θ) is the (i, j)-th element of F(θ). Note that Fij

is a matrix, since the components Θk are in general vectors.
If the estimator θ̂(y) is unbiased, and the estimation problem
is regular, the inverse of the Fisher information matrix is a
lower bound on the error matrix E(θ) (see, e.g., [1, pp. 66–
67], [2, pp. 301–303]):

E(θ) � F(θ)−1. (3)

Note that for many practical estimation problems, all esti-
mators are necessarily biased. This is the case for example
if Θ takes values in an interval [a, b] or [a,∞), with a, b ∈ R

and a < b . Nevertheless, the CRB (3) is a “high-SNR” bound
for any regular estimator θ̂(y), i.e., also for biased estima-
tors θ̂(y). As is well known, the ML estimator achieves the
bound (3) at high SNR (under certain regularity conditions).

2.2. Bayesian Cramér-Rao bound

Let X = (X1, . . . , Xn)T and Y = (Y1, . . . , YN )T , where Xk

and Yk are real random vectors (the extension to complex ran-
dom vectors is straightforward). Suppose p(x, y) is the joint
pdf of X and Y . We consider the problem of estimating X

from an observation vector y = (y1, . . . , yN)T . Let the func-
tion x̂(y) be an estimator of X based on the observation y.
We define the error matrix E of the estimator x̂(y) as

E
�

= EXY [(x̂(Y ) − X)(x̂(Y ) − X)T ]. (4)

The Bayesian information matrix J is given by

Jij
�

= EXY

[
∇xi

log p(X, Y )∇T
xj

log p(X, Y )
]
. (5)

Note that Jij is a matrix, since the components Xk are in
general vectors.
Van Trees proved a Cramér-Rao-type bound for random vari-
ables [1, pp. 72–73]:

E � J
−1. (6)

The inequality (6) is often referred to as the “Bayesian Cramér-
Rao bound” (BCRB), “posterior CRB” or “Van Trees bound”.
It holds if the prior p(x) is zero at the boundary of its support
(“weak unbiasedness condition”), in addition to some reg-
ularity conditions. If the joint pdf p(x, y) is Gaussian, the
bound (6) holds with equality. Note that the BCRB also holds
for biased estimators, in contrast to the CRB. The weak unbi-
asedness condition, however, is not necessarily fulfilled. On
the other hand, the Bayesian Cramér-Rao bound (6) holds at
high SNR for any regular joint pdf p(x, y), i.e., also for a
pdf p(x, y) for which the weak unbiasedness condition is not
met. In addition, the MAP estimator achieves the bound (6)
at high SNR (under certain regularity conditions).

3. COMPUTING CRAMÉR-RAO-TYPE BOUNDS
FROM MARGINALS

In practice, one is often interested in bounding the MSE for a
particular variable Xk, i.e., for a particular component of the
vector X = (X1, . . . , Xn). For example, one may wish to
compute a (standard unconditional) BCRB for the MSE:

EXkY [(x̂k(Y ) − Xk)(x̂k(Y ) − Xk)T ]
�

= Ekk, (7)

which is the k-th diagonal element of the error matrix E.
There are several ways to obtain a (standard unconditional)
BCRB for (7). One may derive a (standard unconditional)
BCRB from the information matrix of the joint pdf p(x, y).
For example, from the standard unconditional BCRB (6), it
follows:

Ekk � [J−1]kk, (8)

where the unconditional Bayesian information matrix J is
computed from the joint pdf p(x, y).
Alternatively, instead of deriving the BCRB from the infor-
mation matrix of p(x, y) (cf. (8)), one may first marginalize
over some variables X� (� �= k), and compute the BCRB from
the information matrix of the resulting marginal of p(x, y).
Let us have a look at a simple example. Let X

�

= (X1, X2)
T ,

and hence p(x, y)
�

= p(x1, x2, y). Suppose that we wish to
obtain a BCRB for X1. This can be done in two ways. One
may compute the unconditional Bayesian information matrix
of p(x1, y); the inverse of that matrix is a standard uncondi-
tional BCRB for X1:

EX1Y [(x̂1(Y ) − X1)(x̂1(Y ) − X1)
T ]

� EX1Y

[
∇x1

∇T
x1

log p(X1, Y )
]−1

, (9)
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where:

p(x1, y)
�

=

∫
x2

p(x1, x2, y)dx2. (10)

Alternatively, one may derive a standard unconditional BCRB
from the unconditional Bayesian information matrix J of the
joint pdf p(x, y), which is a 2 × 2 block matrix. More pre-
cisely, the first diagonal element of the inverse of that matrix
is a standard unconditional BCRB for X1:

EX1Y [(x̂1(Y ) − X1)(x̂1(Y ) − X1)
T ] �

[
J
−1

]
11

. (11)

It has been proved in [8] that the tightest Bayesian Cramér-
Rao bound for a variable Xk is obtained by first marginaliz-
ing over all variables X� (� �= k), and by then computing the
inverse information matrix of the resulting marginal p(xk, y)
(or p(xk|y)). For instance, the bound (9) is tighter than (11).
It is typically easier, however, to derive Cramér-Rao bounds
from the joint pdf (as in (11)) than from a marginal (as in (9)).
In [6], we proposed a message-passing method for comput-
ing Cramér-Rao-type bounds from joint pdfs. In the follow-
ing, we present such methods for computing Cramér-Rao-
type bounds from marginal pdfs.

4. MESSAGE-PASSING ALGORITHM

In this section, we will consider standard CRBs. The exten-
sion to BCRBs and hybrid CRBs is straightforward.
We consider a system consisting of hidden random variablesX

and parameters Θ with joint pdf p(x, y|θ). We wish to com-
pute the standard Cramér-Rao bound for Θ:

E(θ)
�

= EY |Θ

[
(θ̂(Y ) − θ)(θ̂(Y ) − θ)T

]

� F
−1(θ)

�

= EY |Θ

[
∇θ log p(Y |θ)∇T

θ log p(Y |θ)
]−1

,

(12)

where

p(y|θ)
�

=

∫
x

p(x, y|θ)dx. (13)

The following lemma paves the way to a numerical algorithm
for computing the bound (12).

Lemma 1 If the integral
∫

x
p(x, y|θ)dx is differentiable un-

der the integral sign (w.r.t. θ), then

∇θ log p(Y |θ) = EX|ΘY [∇θ log p(X, Y |θ)] . (14)

An equality similar to (14) has been proved earlier in the con-
text of code-aided synchronization [3]. The equality (14) is
easily extended to standard CRBs and hybrid CRBs.
The expression in the RHS of (14) is usually as difficult to
evaluate (analytically) as the expression in the LHS; in fact,
both expressions are often intractable. One may then resort to
numerical methods; the expression in the RHS of (14) sug-
gests the following (numerical) algorithm to determine the
bound (12):

1. Generate a list of samples {ŷ(j)}N
j=1 from p(y|θ).

2. Evaluate the expression:

EX|ΘY

[
∇θ log p(X, ŷ(j)|θ)

]
for j = 1, . . . , N. (15)

3. Compute the matrix F̂
(N)(θ):

F̂
(N)(θ)

�

=
1

N

N∑
j=1

[
EX|ΘY

[
∇θ log p(X, ŷ(j)|θ)

]

· EX|ΘY

[
∇θ log p(X, ŷ(j)|θ)

]T
]
.

(16)

Eventually, we replace the Fisher information matrix F(θ)

in (12) by the approximation F̂
(N)(θ):

E(θ)
�

= EY |Θ

[
(θ̂(Y ) − θ)(θ̂(Y ) − θ)T

]
�

[
F̂

(N)(θ)
]−1

.

(17)

Note that it is usually easy to sample from p(y|θ). The expres-
sion (15) can (in principle) be computed by sum(integral)-
product message passing [9] on a cycle-free factor graph of
p(x, y|θ). It sometimes results in closed-form expression (see
Section 6). However, if the resulting expression (15) is in-
tractable, one may use Monte-Carlo methods.

5. STATE-SPACE MODEL

As we pointed out, the expression (15) can be determined by
sum-product message passing [9]. As an illustration, we con-
sider briefly here estimation in general parameterized state-
space models, which are ubiquitous in signal processing. We
will assume for simplicity that the parameters are constant
and that no prior is defined for the parameters. Our consider-
ations are readily extended, however, to time-varying parame-
ters and parameters with priors. The pdf of such a state-space
model has the form:

p(x, y|θ)
�

= p0(x0)
N∏

k=1

p(xk|xk−1, θ)p(yk|xk), (18)

which is shown in Fig. 1. We can rewrite (15) as:

EX|ΘY [∇θ log p(X, Y |Θ)]

=

N∑
k=1

EX|ΘY [∇θ log p(Xk|Xk−1, θ)] . (19)

The expression EX|ΘY [∇θ log p(Xk|Xk−1, θ)] in the RHS
of (19) can be computed as:

EX|ΘY [∇θ log p(Xk|Xk−1, θ)]

=

∫
xk−1,xk

p(xk, xk−1|θ, y)∇θ log p(xk|xk−1, θ)dxk−1dxk,

(20)
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Fig. 1. Computation of (15) by message passing.

where the joint pdf p(xk, xk−1|θ, y) may be determined by
the sum-product algorithm, as depicted in Fig. 1:

p(xk, xk−1|θ, y) ∝ µXk−1→pk
(xk−1)

µXk→pk
(xk)p(xk|xk−1, θ). (21)

6. NUMERICAL EXAMPLE

We consider the following problem. Let X1, X2, . . . be a real
random process (“auto-regressive (AR) model”) defined by:

Xk = a1Xn−1 + a2Xk−2 + · · · + aMXk−M + Uk, (22)

where a1, . . . , aM are unknown real parameters, and U1, U2, . . .

are real zero-meanGaussian random variables with variance σ2
U .

We observe the real random variable Yk given by:

Yk = Xk + Wk, (23)

where Wk is (real) zero-mean white Gaussian noise with vari-
ance σ2

W . From the observation y = (y1, . . . , yN ), one wishes
to jointly estimate the coefficients a1, . . . , aM , and the vari-
ances σ2

U and σ2
W .

In this situation, the sum-product message passing depicted
in Fig. 1 reduces to Kalman smoothing [9]; the expression (15)
is available in closed-form.
We have computed the CRB for the estimation of a, σ2

U and σ2
W

by means of the algorithm of Section 4 and 5. Fig. 2 shows the
CRBs for the coefficients a together with the MSE of practi-
cal algorithms. From this figure, one can see that the CRBs
are tight, especially as N > 200. It can also be seen that if
the variances σ2

U and σ2
W are unknown, it becomes harder to

estimate the coefficients.
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