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ABSTRACT

Expectation propagation defines a family of algorithms for approxi-

mate Bayesian statistical inference which generalize belief propaga-

tion on factor graphs with loops. As is the case for belief propagation

in loopy factor graphs, it is not well understood why the station-

ary points of expectation propagation can yield good estimates. In

this paper, given a reciprocity condition which holds in most cases,

we provide a constrained maximum likelihood estimation problem

whose critical points yield the stationary points of expectation prop-

agation. Expectation propagation may then be interpreted as a non-

linear block Gauss Seidel method seeking a critical point of this op-

timization problem.

1. INTRODUCTION

Perhaps the single factor most responsible for the slowing of the

widespread introduction of Bayesian methods into complex systems

is the computational complexity that they require. In their most

generic form, exact Bayesian methods suffer heavily from the curse

of dimensionality, since linearly increasing the dimension of the re-

gion to integrate or search increases the computation required expo-

nentially. For this reason, methods which have found ways to save

computation by clever book-keeping in problems with joint distrib-

utions having certain structure, such as the Kalman filter, the Viterbi

algorithm, and the forward backward algorithm, are widely cele-

brated. See [1] for a review of these algorithms and others within

a common framework.

In recent years, attention has been focussed on methods which

provide approximate Bayesian inference in situations where tradi-

tional computation saving methods can not be applied. Perhaps the

best example is the loopy belief propagation algorithm, whose ap-

plication to the soft decoding of turbo codes and LDPC codes has

brought communication systems closer than ever to theoretical per-

formance limits. Expectation propagation, proposed by Minka in

[2, 3] generalizes belief propagation in loopy factor graphs to general

exponential families of densities. Like loopy belief propagation, it is

not well understood why the stationary points of expectation prop-

agation can yield estimates with good performance. Partial results

in the case of belief propagation have been provided via connections
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Télécommunications, INT, 91011 Evry, France.

with approximate free energy minimization [4]. Unfortunately, be-

cause this approximation is not exact when there are loops in the

factor graph, it is not entirely clear why minimizing it yields station-

ary points with good performance, nor is it easy to come up with

easy to check conditions under which one can expect the minimiz-

ing points to be close to the desired estimates. To address this prob-

lem, we provide in this paper a maximum likelihood optimization

framework which connects the expectation propagation stationary

points to the true Bayesian estimates, provided some benign reci-

procity conditions are true. Expectation propagation then turns out

to be an iterative method seeking a critical point of the provided con-

strained optimization problem.

2. STATISTICAL INFERENCE VIA EXPECTATION
PROPAGATION

In the standard Bayesian statistical inference setup, we have a vector

of parameters

θ := [θ1, . . . , θN ]

and a joint probability density p(r, θ) which indicates a dependence

model for some observations r on the (random) parameters θ. We

have observed a particular set of observations r and we are interested

in determining which θ gave rise to these observations. If compu-

tational complexity is not an issue, this may simply be done using

Bayes’ rule to get the a posteriori distribution for θ

p(θ|r) =
p(r, θ)�

θ
p(r, θ) dθ

(1)

which can then be used either to determine the maximum a posteriori

(MAP) estimate arg maxθ p(θ|r) or various posterior moments (e.g.

mean and variance) for θ ∈ Θ ⊆ R
N . Here, and for all of the other

integrals in this paper, the integral is over the entire parameter space

Θ.

Unfortunately for large numbers of parameters and complex joint

densities, the integral in the denominator of (1) and/or the arg max
required for the MAP estimate are often too computationally com-

plex to perform. In order to counteract this problem, various meth-

ods have been developed which exploit structure in the joint density

p(r, θ) in order to calculate or approximate the a posteriori density,

the MAP estimator, or the posterior moments, etc. Expectation prop-

agation [2, 3], is one such method which generalizes belief propaga-

tion [5] and the sum product algorithm [1] on factor graphs with cy-

cles to continuous parameter environments. The algorithm exploits
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the fact that the joint density factors multiplicatively

p(r, θ) ∝
M�

m=1

fm(θ) (2)

to iteratively refine an approximation

p(r, θ) ≈
�M

m=1 gm(θ)�
θ

�M
m=1 gm(θ) dθ

which is the product of exponential densities which are simpler to

work with than fm(θ). Abstractly written, the algorithm repeats the

following steps

1. Choose a gi(θ) to refine.

2. Minimize the Kullback Leibler distance

D

�
fi(θ)

�
m�=i gi(θ)�

θ
fi(θ)

�
m�=i gi(θ) dθ

�����
�M

m=1 gm(θ)�
θ

�M
m=1 gm(θ) dθ

�

with respect to gi(θ).

3. Repeat from the beginning until convergence of gi(θ) or a

fixed limit on the number of iterations is exceeded.

For the algorithm to be practical the densities gm(θ) should be stan-

dard exponential families, so that the minimization of the Kullback

Leibler distance is a matter of matching expectations. In order to

illustrate this more clearly, define gm(θ) to be a density of a mini-

mal standard exponential family distribution [6, 7, 8] with associated

natural parameters βm for each m ∈ {1, . . . , M}, so that

gm(θ) := exp(lm(θ) · βm − ψlm(βm))

where lm(θ) are the sufficient statistics1 and

ψlm(βm) := log

��
θ

exp(lm(θ) · βm) dθ

�

Furthermore, define αi and ti to be the parameters and sufficient sta-

tistics associated with the standard exponential family density which

results when multiplying every gm in the approximation except the

ith.

exp(ti(θ) · αi − ψti(αi)) =

�
m�=i gm(θ)�

θ

�
m�=i gm(θ) dθ

where

ψti(αi) := log

��
θ

exp(ti(θ) · αi) dθ

�
so that

exp(ti(θ) ·αi + li(θ)βi −ψti,li(αi, βi)) =

�M
m=1 gm(θ)�

θ

�M
m=1 gm(θ) dθ

where

ψti,li(αi, βi) := log

��
θ

exp(ti(θ) · αi + li(θ) · βi) dθ

�

We may now rewrite the expectation propagation algorithm as

1The density will be with respect to either Lebesgue or counting reference
measure if |Θ| is uncountable or finite, respectively.

1. Choose a gi(θ) to refine. Update αi by solving

exp(ti(θ) · αi + li(θ) · βi)�
θ

exp(ti(θ) · αi + li(θ) · βi) dθ

=
exp(

	M
m=1 lm(θ) · βm)�

θ
exp(

	M
m=1 lm(θ) · βm) dθ

(3)

which is equivalent to solving

Eb[ti(θ)] = Eq[ti(θ)] (4)

where b and q are the densities on the left and right hand side

of (3) respectively.

2. Update βi by minimizing D(v||h) with respect to βi, where

v =
fi(θ) exp(ti(θ) · αi)�

θ
fi(θ) exp(ti(θ) · αi) dθ

and

h =
exp(ti(θ) · αi + li(θ) · βi)�

θ
exp(ti(θ) · αi + li(θ) · βi) dθ

Note that minimizing D(v||h) with respect to βi is equivalent

to solving the equation

Ev[li(θ)] = Eh[li(θ)] (5)

3. Rinse and repeat.

We will make the reciprocity assumption that

li(θ) ⊂ ti(θ)

(i.e. li is a subset of the elements of the vector function ti) and that

the elements of ti(θ) \ li(θ) (i.e. the elements of ti not in li) are

independent of ti when the elements of θ are drawn independently

of one another2. We will further make the common sense assump-

tion that the statistics ti are sufficient for the factor fi that they are

approximating, so that there is a f̂i such that

f̂i(ti(θ)) = fi(θ) ∀θ ∈ Θ

Within the context of belief propagation on a factor graph, reci-

procity will hold when the number of parameters coming into a fac-

tor node (associated with fm) are equal to the number of parameters

coming out of that factor node. Among other things, reciprocity im-

plies that in solving (5) only the elements of αi multiplying li affect

the calculation, and thus it is safe to replace ti with li and shrink αi

to only contain those elements multiplying li.

3. CONNECTING EXPECTATION PROPAGATION WITH
BAYESIAN ESTIMATION

In this section we strive to explain the empirically observed good

performance of expectation propagation by providing a direction

connection between its stationary points and a constrained maximum

likelihood estimation problem. We thus show mathematically the

sense in which this technique for approximate Bayesian inference

is approximate, and we provide a parameter c which is capable of

being measured during normal operation of expectation propagation

which indicates the accuracy of the approximation.

2See [9] for further discussion of the implications of reciprocity and a
message passing framework.

V  714



To begin, we note that if we introduced the new vectors of para-

meters

am := [am,1, . . . , am,N ] , bm := [bm,1, . . . , bm,N ] (6)

a := [a1, . . . , aM ] , b := [b1, . . . ,bM ] (7)

we could use them to write a new joint density

p(r, θ,a,b) = δ[a − b]

M�
m=1

fm(am)δ[θ − bm] (8)

which gave back the original joint density for r and θ via integration

p(r, θ) =

�
a

�
b

δ[a − b]

M�
m=1

fm(am)δ[θ − bm] da db

where δ is the Dirac (impulse) distribution, so that δ[a−b] enforces

that a = b and δ[b1 − bm] enforces that b1 = · · · = bM . Note

further, that the maximum a posteriori (MAP) estimate for a yields

am as the MAP estimate for θ for any m ∈ {1, . . . , M}:

a∗ = arg max
a,b

p(r,a) =⇒ a∗
m = arg max

θ
p(r, θ)

and likewise for b. Indeed, we have

p(r, θ) = p(r,a(θ)) = p(r,b(θ)) ∀θ

where a(θ) is defined as the function giving am = θ∀m ∈ {1, . . . , M}
so that any a posteriori expectations for am will be the same as the a

posteriori expectations for θ.

Now, suppose we consider an approximation to the joint distri-

bution by softening the requirement that a = b. One way to do this

would be to approximate p(r, θ,a,b) as

p̂(r, θ,a,b|pα , pβ) = pα(a)pβ(b)

M�
m=1

fm(am)δ[θ − bm]

This approximation will be accurate, for instance, if we can have the

approximation

δ[a − b] ≈
M�

m=1

pαm(am)pβm
(bm) =: pα(a)pβ(b) (9)

have error only for a and b for which p(r, θ,a,b) is relatively small.

Around some nominal a∗ and b∗ we can control the error in 9 by

choosing two distributions (pα , pβ) ∈ C with the ams and bms

independently distributed according to standard exponential families

with sufficient statistics tm(am) and lm(bm) and with parameters

αm and βm which lie within the set

C := {(α, β) | h(α, β) = log(c)}
where

h(α, β) :=

M�
m=1

ψtm,lm(αm, βm) − ψtm(αm) − ψlm(βm)

where we expect that the approximation in (9) and thus the approxi-

mation p̂(r, θ,a,b|pα , pβ) ≈ p(r,a,b) will be more accurate with

increasing c. The intuitive idea behind this constraint set is that we

are fixing the probability that a ≈ b to be a hopefully large constant

c. In the case that the random variables in a and b are continuous,

one must be careful in making this statement since, strictly speaking

by properties of separate continuous random variables Pr[a = b] =
0. To see what the constraint in C means, suppose we make the idea

a ≈ b rigorous by considering the ball of size ε centered at z

B(ε, z) := {(a,b)‖a − z‖ < ε, ‖b − z‖ < ε}

Define the function V(ε) to be the volume of B(ε, z). If we define

C′ :=

�
(pα , pβ)| lim

ε→0

Prpα,pβ [∃z s.t. (a,b) ∈ B(ε, z)]

V(ε)
= c

�

then, since for small enough ε

Prpα,pβ [∃z, s.t. (a,b) ∈ B(ε, z)]

≈ V(ε)

�
pα(z)pβ(z) dz

= V(ε) exp(h(α, β)) (10)

we have C′ = C. The nominal a∗ and b∗ around which the ap-

proximation (9) is accurate is determined by α and β. For instance,

when |Θ| is finite, for a particular choice of pα and pβ in C with

c = 1, pα = δ[a − z] and pβ = δ[b − z] for some z, and thus the

approximation (9) is only valid around a∗ = b∗ = z.

The approximation (9) also gives us a likelihood function for the

parameters (α, β) of (pα , pβ)

p̂(r|α, β) :=

�
a

�
b

�
θ

p̂(r, θ,a,b|α, β) dθ da db

Naturally, we want to choose the parameters α, β that maximize the

likelihood of having observed r within the set C0 of α, β such that

(pα , pβ) ∈ C. To see this, again consider finite |Θ|, and c = 1. We

want the z = a∗ = b∗ around which (9) is accurate to be the z such

that p(r, θ = z) is largest, since this will incur the least error when

approximating p̂(r, θ, a,b|pα , pβ) ≈ p(r,a,b).

Finally, since we had before that p(r, θ) = p(r,b(θ)), and we

are approximating p(r,a,b, θ) ≈ p̂(r,a,b, θ|α, β), we will use

the approximation p(r, θ) ≈ p̂(r,b(θ)|α, β) in calculating a pos-

teriori probabilities, moments, and estimators for θ.

Summarizing, we may pick

(α∗, β∗) = arg max
(α,β)∈C0

log(p̂(r|α, β)) (11)

and then approximate p(r, θ) ≈ p̂(r,b(θ)|α∗, β∗) in order to form

a posteriori estimates about θ whose accuracy will improve as we

increase c.

We will now see how the expectation propagation algorithm can

be viewed as an iterative method bent on finding a solution to the

constrained maximum likelihood estimation problem (11). Begin by

forming the Lagrangian

L(α, β, λ) = log(p̂(r|α, β)) + λ(h(α, β) − log(c))

Choosing a Lagrange multiplier λ = −1 and taking the gradient

with respect to αm gives

∇αmL =

�
a,b,θ

tm(am)p̂(r,a,b, θ|α, β) da db dθ�
a,b,θ

p̂(r,a,b, θ|α, β) da db dθ

−
�
z
tm(zm)pα(z)pβ(z) dz�

z
pα(z)pβ(z) dz

= Ev[tm(θ)] − Eh[tm(θ)] (12)
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and likewise

∇βm
L =

�
z
lm(z)

�M
m=1 pαm(z)pβm

(z) dz
�
z

�M
m=1 pαm(z)pβm

(z) dz

−
�
z
lm(bm)pα(z)pβ(z) dz
�
z
pα(z)pβ(z) dz

= Eb[lm(θ)] − Eq[lm(θ)] (13)

Now, combining the information from (4) and (5) with (12) and (13)

we see that if we pick exponential families with sufficient statistics

with reciprocity, then α and β yield a stationary point of expectation

propagation if and only if the gradient of the Lagrangian is equal to

zero. In fact, expectation propagation may be considered to be a

nonlinear block Gauss Seidel iteration seeking to find a solution to

∇L = 0. To see this, note that performing step 2 of expectation

propagation is equivalent to choosing αm such that

∇βm
L = 0

and that performing step 3 of expectation propagation is equivalent

to choosing βm such that

∇αmL = 0

Thus, updating either αm or βm according to expectation propaga-

tion is equivalent to zeroing ∇βm
L and ∇αmL respectively. This is

the form of a nonlinear block Gauss Seidel method [10, 11].

Note that the method in which expectation propagation solves

the constrained optimization problem is rather atypical, in that in-

stead of choosing a value of the constraint, a value of the Lagrange

multiplier is chosen. Choosing λ = −1 implies that at a critical

point of the Lagrangian, the gradient of the constraint is equal to the

gradient of the approximate likelihood function, and thus that the

change in the two around that critical point is equal to first order. In

contexts where decisions are taken after the convergence of expec-

tation propagation by selecting only on α∗ = β∗ = θ∗ ∈ Θ as the

candidate, the decision taking makes the largest increase in the con-

straint possible. This partially motivates the choice λ = −1 in these

contexts because this increase in the constraint is accompanied by

with an equivalently large increase in the objective function, to first

order. Although we do not discuss it here, choosing λ = −1 is also

special because it allows for a pseudo duality relationship between

the statistics based Bethe free energy and our optimization problem

[9].

In summary, we have seen that for approximating distributions

which satisfy the reciprocity condition, expectation propagation may

be interpreted as an iterative method bent on finding a critical point

of the Lagrangian for the optimization problem (11) with Lagrange

multiplier −1. The objective function in the optimization problem is

an approximation to the original joint density, whose approximation

error is controlled by considering parameters within the constraining

set C.

Note that the reciprocity condition, or that within the message

passing interpretation the number of parameters coming into a factor

node fm is equal to the number of parameters coming out of that

factor node, is always satisfied by belief propagation. In fact, for

finite state spaces Θ one may strengthen the interpretation presented

here to even more closely connect belief propagation with maximum

likelihood detection [12, 13, 14, 15]. Most, if not all, of the cases

of interest among existing applications of expectation propagation

seem to satisfy reciprocity, although the algorithm statement from

[2] is general enough to have it not be satisfied.

4. CONCLUSIONS

Under a reciprocity condition which holds in most applications of

expectation propagation, we have connected the stationary points of

expectation propagation with the answers to a maximum likelihood

estimation problem subject to some intuitive constraints. Expecta-

tion propagation may then be interpreted as an iterative Gauss Seidel

method seeking a critical point of this constrained maximum likeli-

hood optimization problem with Lagrange multiplier −1. For large

values of the constraint c after convergence, we can expect the ap-

proximation introduced to be accurate.
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