
SPARSENESS BY ITERATIVE PROJECTIONS ONTO SPHERES

Fabian J. Theis∗

Inst. of Biophysics, Univ. of Regensburg
93040 Regensburg, Germany

Toshihisa Tanaka∗

Dept. EEE, Tokyo Univ. of Agri. and Tech.
Tokyo 184-8588, Japan

ABSTRACT

Many interesting signals share the property of being sparsely active.
The search for such sparse components within a data set commonly
involves a linear or nonlinear projection step in order to fulfill the
sparseness constraints. In addition to the proximity measure used
for the projection, the result of course is also intimately connected
with the actual definition of the sparseness criterion. In this work,
we introduce a novel sparseness measure and apply it to the problem
of finding a sparse projection of a given signal. Here, sparseness
is defined as the fixed ratio of p- over 2-norm, and existence and
uniqueness of the projection holds. This framework extends previ-
ous work by Hoyer in the case of p = 1, where it is easy to give a
deterministic, more or less closed-form solution. This is not possible
for p � 1, so we introduce an algorithm based on alternating projec-
tions onto spheres (POSH), which is similar to the projection onto
convex sets (POCS). Although the assumption of convexity does not
hold in our setting, we observe not only convergence of the algo-
rithm, but also convergence to the correct minimal distance solution.
Indications for a proof of this surprising property are given. Simula-
tions confirm these results.

1. INTRODUCTION

Sparseness is an important property of many natural signals, and var-
ious definitions exist. Intuitively, a signal x ∈ Rn increases in sparse-
ness with the increasing number of zeros; this is often measured by
the 0-(pseudo)-norm ‖x‖0 := |{i|xi � 0}|, counting the number of
non-zero entries of x. It is a pseudo-norm because ‖αx‖0 = |α|‖x‖0
does not necessarily hold; indeed ‖αx‖0 = ‖x‖0 if α � 0, so ‖.‖0 is
scale-invariant.

A typical problem in the field is the search for sparse instances
or representations of a data set. Using the above 0-pseudo-norm as
sparseness measure quickly turns out to be both theoretically and
algorithmically unfeasible. The former simply follows because ‖.‖0
is discrete, so the indeterminacies of the problem can be expected
to be very high, and the latter because optimization on such a dis-
crete function is a combinatorial problem and indeed turns out to be
NP-complete. Hence, this sparseness measure is commonly approx-
imated by some continuous measures e.g. by replacing it by the p-
norm ‖x‖p :=

(∑n
i=1 |xi|p

)1/p for p ∈ R+. As limp→0+ ‖x‖pp = ‖x‖0, this
can be interpreted as a possible approximation. This together with
extensions to noisy situations can be used for measuring sparseness,
and the connection with ‖.‖0, especially in the case of p = 1, has
been intensively studied [1].

Often, we are not interested in the scale of the signals, so ideally
the sparseness measure should be independent of the scale — which

∗Partial financial support by the JSPS (PE 05543) and the DFG (GRK
638) is acknowledged.

is the case for the 0-pseudo-norm, but not for the p-norms. In or-
der to guarantee scaling invariance, some normalization has to be
applied in the latter case, and a possible solution is the measure

σp(x) := ‖x‖p/‖x‖2 (1)

for x ∈ Rn \ {0} and p > 0. Then σp(αx) = σp(x) for α � 0;
moreover the sparser x, the smaller σp(x). Indeed, it can still be
interpreted as approximation of the 0-pseudo-norm in the sense that
it is scale-invariant and that limp→0+ σp(x)p

= ‖x‖0. Altogether we
infer that by minimizing σp(x) under some constraint, we can find
a sparse representation of x. Hoyer [2] noticed this in the important
case of p = 1; he defined a normalized sparseness measure by (

√
n−

σ1(x))/(
√

n − 1), which lies in [0, 1] and is maximal if x contains
n − 1 zeros and minimal if the absolute value of all coefficients of x
coincide.

Little attention has been paid to finding projections in the case of
p � 1, which is particularly important for p → 0 as better approxi-
mation of ‖.‖0. Hence, the goal of this manuscript is to explore the
general notion of sparseness in the sense of equation (1) and to con-
struct algorithms to project a vector to its closest vector of a given
sparseness.

2. EUCLIDEAN PROJECTION

Let M ⊂ Rn be an arbitrary, non-empty set. A vector y ∈ M ⊂ Rn

is called Euclidean projection of x ∈ Rn in M, in symbols y �M x, if
‖x − y‖2 ≤ ‖x − z‖2 for all z ∈ M.

2.1. Existence and uniqueness

We review conditions [3] for existence on uniqueness of the Euclid-
ean projection. For this, we need the following notion: Let X(M) :=
{x ∈ Rn | there exists more than one point adjacent to x in M} = {x ∈
R

n | #{y ∈ M | y �M x} > 1} denote the exception set of M.

Theorem 2.1 (Euclidean projection).

i. If M is closed and nonempty, then the Euclidean projection
onto M is exists that is for every x ∈ Rn there exists a y ∈ M
with y �M x.

ii. The Euclidean projection onto M is unique from almost all
points in Rn i.e. vol(X(M)) = 0.

Proof. See [3], theorems 2.2 and 2.6. �

So we can always project a vector x ∈ Rn onto a closed set M,
and this projection will be unique almost everywhere. In this case,
we denote the projection by πM(x) or π(x) for short. Indeed, in the
case of the p-spheres S n−1

p , the exception set consists of a single
point X(S n−1

p) = {0} if p ≥ 2, hence πS n−1
p

is well-defined on Rn \ {0}.
If p < 2, additional non-uniqueness points exists on the coordinate
hyperplanes, which can be ignored thanks to theorem 2.1(ii).

V 709142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

y

S n−1
p

t

∇‖. − x‖22

∇‖.‖pp

Fig. 1. Constrained gradient t on the p-sphere, given by the projec-
tion of the unconstrained gradient ∇‖. − x‖22 onto the tangent space
that is orthogonal to ∇‖.‖pp, see equation (6).

2.2. Projection onto a p-sphere

Let S n−1
p := {x ∈ Rn| ‖x‖p = 1} denote the (n − 1)-dimensional

sphere with respect to the p-norm (p > 0). A scaled version of this
unit sphere is given by cS n−1

p := {x ∈ Rn| ‖x‖p = c}. The spheres
are smooth C1-submanifolds of Rn for p ≥ 2. For p < 2, they have
corners at the intersections with the coordinate axes.

Later we will need to explicitly find the Euclidean projection onto
a p-sphere, so we introduce it algorithmically in the following. First
note that without loss of generality we may assume that the p-sphere
has been scaled to a unit sphere because the general case can be
recovered by πcS n−1

p
(x) = cπS n−1

p
(x/c) for c > 0.

Now, in the case p = 2, the projection is simply given by

πS n−1
2

(x) = x/‖x‖2. (2)

In the case p = 1, the sphere consists of a union of hyperplanes
being orthogonal to (±1, . . . ,±1). Considering only the first quadrant
(i.e. xi > 0), this means that πS n−1

1
(x) is given by the projection onto

the hyperplane H := {x ∈ Rn|〈x, e〉 = n−1/2} and setting resulting
negative coordinates to 0; here e := n−1/2(1, . . . , 1). So with x+ := x
if x ≥ 0 and 0 otherwise, we get

πS n−1
1

(x) =
(
x + (n−1/2 − 〈x, e〉)e

)
+

. (3)

In the case of arbitrary p > 0, the projection is given by the unique
solution of

πS n−1
p

(x) = argminy∈S n−1
p
‖x − y‖22. (4)

Unfortunately, no closed-form solution exists in the general case,
so we have to numerically determine the solution. We have exper-
imented with a) explicit Lagrange multiplier calculation and mini-
mization, b) constrained gradient descent and c) constrained fixed-
point algorithm (best). Ignoring the singular points at the coor-
dinate hyperplanes, let us first assume that all xi > 0. Then at
a regular solution y of equation (4), the gradient of the function
to be minimized is parallel to the gradient of the constraint, i.e.
y− x = λ ∇‖.‖pp

∣∣∣
y

for some Lagrange-multiplier λ ∈ R, which can be

calculated from the additional constraint equation ‖y‖pp = 1. Using
the notation y�p := (yp

1 , . . . , y
p
n) for the componentwise exponentia-

tion, we therefore get

y − x = λp y�(p−1) and
∑

i

yp
i = 1 (5)

Algorithm 1: Projection onto S n−1
p by constrained gradient de-

scent. Commonly, the iteration is stopped after the update step-
size lies below some given threshold.

Input: vector x ∈ Rn, learning rate η(i)
Output: Euclidean projection y = πS n−1

p
(x)

Initialize y ∈ S n−1
p randomly.1

for i← 1, 2, . . . do
df ← y − x, dg← p sgn(y) |y|�(p−1)2

t← df − dfdgdg/(dgdg)3

y← y − η(i)t4

y← y/‖y‖p5

end

For p � {1, 2}, these equations cannot be solved in closed form,
hence we propose an alternative approach to solving the constrained
minimization (4). The goal is to minimize f (y) := ‖y−x‖22 under the
constraint g(y) := ‖y‖pp = 1. This can for example be achieved by
gradient-descent methods, taking into account that the gradient has
to be calculated on the submanifold given by the S n−1

p -constraint, see
figure 1 for an illustration. The projection of the gradient ∇ f onto
the tangent space of S n−1

p at y can be easily calculated as

t = ∇ f − 〈∇ f ,∇g〉∇g/‖∇g‖22. (6)

Here, the explicit gradients are given by ∇ f (y) = y − x and ∇g(y) =
p sgn(y) |y|�(p−1), where sgn(y) denotes the vector of the componen-
twise signs of y, and |y| := sgn(y)y the componentwise absolute
value. The projection algorithm is summarized in algorithm 1. Iter-
atively, after calculating the constrained gradient (lines 2 and 3), it
performs a gradient-descent update step (line 4) followed by a pro-
jection onto S n−1

p (line 5) to guarantee that the algorithm stays on the
submanifold.

The method performs well, however as most gradient-descent-
based algorithms, without further optimization it takes quite a few it-
erations to achieve acceptable convergence, and the choice of an op-
timal learning rate η(i) is non-trivial. We therefore propose a second
projection method employing a fixed-point optimization strategy. Its
idea is based on the fact that at local minima y of f (y) on S n−1

p , the
gradient ∇ f (y) is orthogonal to S n−1

p , so ∇ f (y) ∝ ∇g(y). Ignoring
signs for illustrative purposes, this means that y − x ∝ p y�(p−1), so
y can be calculated from the fixed-point iteration y← λp y�(p−1)

+ x
with additional normalization. Indeed, this can be equivalently de-
rived from the previous Lagrange equations (5), also yielding equa-
tions for the proportionality factor λ: we can simply determine it
from one component of equation (5), or to increase numerical ro-
bustness, as mean from the total set. Taking into account the signs
of the gradient (which we ignored in equation (5)), this yields an
estimate λ̂ := 1

n

∑n
i=1(yi − xi)/(p sgn(yi) |yi |p−1). Altogether, we get

the fixed-point algorithm 2, which in experiments turns out to have
a considerably higher convergence rate than algorithm 1.

In table 1, we compare the algorithms 1 and 2, namely with re-
spect to the number of iterations they need to achieve convergence
below some given threshold. As expected, the fixed-point algorithm
outperforms gradient-descent always except for the case of higher
dimensions and p > 2 (non-sparse case). In the following we will
therefore use the fixed-point algorithm for projection onto S n−1

1 .

2.3. Projection onto convex sets

If M is a convex set, then the Euclidean projection πM(x) for any
x ∈ Rn is already unique, so X(M) = ∅ and the operator πM is called

V 710

Algorithm 2: Projection onto S n−1
p via fixed-point iteration.

Again, the iteration is to be stopped after only sufficiently small
updates are taken.

Input: vector x ∈ Rn

Output: Euclidean projection y = πS n−1
p

(x)

Initialize y ∈ S n−1
p randomly.1

for i← 1, 2, . . . do
λ← ∑n

i=1 (yi − xi) /
(
n sgn(yi) |yi|p−1

)
2

y ← x + λ sgn(y) |y|�(p−1)3

y ← y/‖y‖p4

end

Table 1. Comparison of the gradient- and fixed-point-based projec-
tion algorithms 1 and 2 for finding the Euclidean projection onto
cS n−1

p for varying parameters; mean was taken over 100 iterations
with x ∈ [−1, 1]n sampled uniformly. Here #itsgd and #itsfp denote
the numbers of iterations the algorithm took to achieve update steps
of size smaller than ε = 0.0001, and ‖ygd − yfp‖ equals the norm of
the difference of the found minima.

n p c #itsgd #itsfp ‖ygd − yfp‖
2 0.9 1.2 6.7 ± 4.7 3.7 ± 1.0 0.0 ± 0.0
2 0.9 2.0 10.9 ± 6.9 4.1 ± 1.0 0.0 ± 0.0
2 2.2 0.9 13.0 ± 21.0 5.5 ± 4.2 0.0 ± 0.0
3 0.9 3 13.7 ± 6.9 4.4 ± 1.0 0.0 ± 0.0
3 2.2 0.9 9.6 ± 16.6 7.2 ± 10.2 0.0 ± 0.0
4 0.9 3 9.8 ± 6.8 4.4 ± 1.1 0.0 ± 0.0
4 2.2 0.9 6.0 ± 5.0 9.2 ± 8.1 0.0 ± 0.0

convex projector, see e.g. [3], lemma 2.4 and [4]. The theory of
projection onto convex sets (POCS) [4, 5] is a well-known technique
in signal processing; given N convex sets M1, . . . ,MN ⊂ Rn and
an operator defined by π = πMN · · ·πM1 , POCS can be formulated
as the recursion defined by yi+1 = π(yi). It always approaches the
intersection of the convex sets that is yi → M∗ =

⋂N
i=1 Mi.

Note that POCS only finds an arbitrary point in
⋂N

i=1 Mi, which
not necessarily coincides with its Euclidean projection: for example
if M1 := {x ∈ Rn| ‖x‖2 ≤ 1} is the unit disc, and M2 := {x ∈ Rn| x1 ≤
0} the lower first half-plane, then the Euclidean projection from x :=
(1, 1, 0, . . . , 0) onto M1 ∩ M2 equals πM1∩M2 (x) = (0, 1, 0, . . . , 0), but
application of POCS yields (0, 1/

√
2, 0, . . . , 0).

3. SPARSE PROJECTION

In this section, we combine the notions from the previous sections to
search for sparse projections. Given a signal x ∈ Rn, our goal is to
find the closest signal y ∈ Rn of fixed sparseness σp(y) = c. Hence,
we search for y ∈ Rn with

y = argminσp(y)=c ‖x − y‖2. (7)

Due to the scale-invariance of σ, the problem (7) is equivalent to
finding

y = argmin‖y‖2=1,‖y‖p=c ‖x − y‖2. (8)

In other words, we are looking for the Euclidean projection y =
πM(x) onto M := S n−1

2 ∩ cS n−1
p . Note that due to theorem 2.1, this

solution to (8) exists if M � ∅ and is almost always unique.

Algorithm 3: Projection onto spheres (POSH). In practice,
some abort criterion has to be implemented. Often q = 2.

Input: vector x ∈ Rn \ X(S n−1
p ∩ S n−1

q) and p, q > 0
Output: y = πS n−1

p ∩S n−1
q

(x)

Set y← x.1

while y � S n−1
p ∩ S n−1

q do
y← πS n−1

q
(πS n−1

p
(y))2

end

3.1. Projection onto spheres (POSH)

In the special case of p = 1 and nonnegative x, Hoyer has proposed
an efficient algorithm for finding the projection [2], simply by using
the explicit formulas for the p-sphere projection; such formulas do
not exist for p � 1, 2, so a more general algorithm for this situation
is proposed in the following.

Its idea is a direct generalization of POCS: we alternately project
first on S n−1

2 then on S n−1
p , using the Euclidean projection operators

from section 2.2. However, the difference is that the spheres are
clearly non-convex (if p � 1), so in contrast to POCS, convergence
is not obvious. We denote this projection algorithm by projection
onto spheres (POSH), see algorithm 3.

First note that POSH obviously has the desired solution as fixed-
point. In experiments, we observe that indeed POSH converges, and
moreover it converges to the closest solution i.e. to the Euclidean
projection (which does not hold for POCS in general)! Finally we
see that in higher dimensions, all update vectors together with the
starting point x lie in a single two-dimensional plane, so theoreti-
cally we can reduce proofs to two-dimensional cases as well as build
algorithms using this fact.

In the following section, we will prove the above claims for the
case of p = 1, where an explicit projection formula (3) is known. In
the case of arbitrary p, so far we are only able to give experimental
validation of the astonishing facts of convergence and convergence
to the Euclidean projection.

3.2. Convergence

The proof needs the following simple convergence lemma, which
somewhat extends on a special case treated by the more general Ba-
nach fixed-point theorem.

Lemma 3.1. Let f : R → R be continuously-differentiable with
f (0) = 0, f ′(0) > 1 and let f ′ be positive and strictly decreasing. If
f ′(x) < 1 for some x > 0, then there exists a single positive fixed-
point x̂ of f , and f i(x) converges to x̂ for i→ ∞ and any x > 0.

Theorem 3.2. Let n ≥ 2, p > 0 and x ∈ Rn \X(M). If y1 := πS n−1
2

(x)

and iteratively yi := πS n−1
2

(πS n−1
1

(yi−1)) according to the POSH algo-

rithm, then yi converges to some y∞ ∈ S n−1
2 , and y∞ = πM(x).

Using lemma 3.1, we can prove the convergence theorem in the
case of p = 1, but omit the proof due to lack of space.

3.3. Simulations

At first, we confirm the convergence results from theorem 3.2 for
p = 1 by applying POSH with 100 iterations in 1000 runs onto vec-
tors x ∈ R6 sampled uniformly from [0, 1]6; c was chosen to be
sufficiently large (c = 2.4). We always get convergence. We also
calculate the correct projection (using Hoyer’s projection algorithm

V 711

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

x

(a) POSH for n = 2, p = 1

1.5π(S2
1
)

π(S2
2
)

x

(b) POSH for n = 3, p = 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S1
2

x

2S1
0.5

(c) POSH for n = 2, p = 0.5

Fig. 2. Starting from x0 (◦), we alternately project onto cS 1 and S 2. POSH performance is illustrated for p = 1 in dimensions 2 (a) and 3 (b),
were a projection via PCA is displayed — no information is lost hence the sequence of points lies in a plane as shown in the proof theorem
3.2. Figure (c) shows application of POCS for n = 2 and p = 0.5.

Table 2. Performance of the POSH algorithm 3 for varying parame-
ters. See text for details.

n p c ‖yPOSH − yscan‖2
2 0.8 1.2 0.005 ± 0.0008
2 4 0.9 0.02 ± 0.005
3 0.8 1.2 0.02 ± 0.009
3 4 0.9 0.04 ± 0.03

[2]). The distance between his and our solution was calculated to
give a mean value of 5 · 10−13 ± 5 · 10−12 i.e. we get virtually always
the same solution.

In figures 2(a) and (b), we show application for p = 1; we visual-
ize the performance in 3 dimensions by projecting the data via PCA
— which by the way throws away virtually no information (con-
firmed by experiment) indicating the validness of theorem 3.2 also in
higher dimensions. In figure 2(c) a projection for p = 0.5 is shown.

Now, we perform batch-simulations for varying p. For this, we
uniformly sample the starting vector x ∈ [0, 1]n in 100 runs, and
compare the POSH algorithm result with the true projection. POSH
is performed starting with the p-norm projection using algorithm 1
and 100 iterations. As the true projection πM(x) cannot be deter-
mined in closed form, we scan [0, 1]n−1 using the stepsize ε = 0.01
to give the first (n − 1) coordinates of our estimate y of πM(x); its
n-th coordinate is then constructed to guarantee y ∈ S n−1

p (for p < 1)
or y ∈ S n−1

2 (for p > 1) respectively. Using Taylor-approximation
of (y + ε)p, it can easily be shown that two adjacent grid points have
maximal difference

∣∣∣‖(y1 + ε, . . . , yn + ε)‖pp − ‖y‖pp
∣∣∣ ≤ pnε + O(ε2) if

y ∈ [0, 1]n and p ≥ 1. Hence by taking only vectors y as approxima-
tion of πM(x) with

∣∣∣‖y‖22 − 1
∣∣∣ < nε (for p < 1) or

∣∣∣‖y‖pp − cp
∣∣∣ < pnε

moreover guarantees that y approximately lies in M. We then choose
y within this set with minimal distance to the original x as approxi-
mate of πM(x). Table 2 shows the performance of POSH for varying
dimension and sparseness-parameter p. Clearly the differences be-
tween the POSH result yPOSH and the approximated true projection
yscan is in the order of ε, which confirms that POSH converges to
the correct projection also for p � 1.

4. CONCLUSION

We have shown how to reach signal sparseness, defined simply by
the p-norm after normalization. As a modification of the traditional
POCS, we have proposed a new projection algorithm named POSH
in order to find projections for p � 1. We have theoretically jus-
tified this idea in some cases, and experimental results support our
claim. Our theory and algorithm now has a wide range of applica-
tions, since measuring sparseness by norms with p < 1 models the
0-pseudo-norm closer than the common 1-norm approach, analyzed
for example in [1, 2]. Since we have modeled the algorithm after
POCS, many of its extensions (see e.g. [4]) may possibly translated
to the non-convex POSH model. Although this paper mostly fo-
cuses on the theoretical aspects, we can apply the sparse projection
to matrix factorization problems similar to [2]. Also, by imposing
additional constraint such as non-negativity to the model — which
is easily possible in POSH by simply adding an additional (possibly
convex) projection step — various applications to image processing
are possible, where non-negativity naturally occurs. The approach
can for example be applied to feature extraction for pattern recogni-
tion, blind image deconvolution, sparse coding of images, etc. These
applications are open problems for future work.

5. REFERENCES

[1] D. Donoho and M. Elad, “Optimally sparse representation in
general (nonorthogonal) dictionaries via l1 minimization,” Proc.
Nat. Acad. Sci., vol. 100, no. 5, pp. 2197–2202, 2003.

[2] P.O. Hoyer, “Non-negative matrix factorization with sparseness
constraints,” Journal of Machine Learning Research, vol. 5, pp.
1457–1469, 2004.

[3] F.J. Theis, K. Stadlthanner, and T. Tanaka, “First results on
uniqueness of sparse non-negative matrix factorization,” in
Proc. EUSIPCO 2005, Antalya, Turkey, 2005.

[4] D.C. Youla and H. Webb, “Image restoration by the methods of
convex projections. part i — theory,” IEEE Trans. Med. Imag-
ing, vol. MI, no. I, pp. 81–94, 1982.

[5] P.L. Combettes, “The foundations of set theoretic estimation,”
Proc. IEEE, vol. 81, pp. 182–208, 1993.

V 712

