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ABSTRACT
In this paper, we apply the methodology of cross-validation
Maximum Likelihood estimation to the problem of multivari-
ate kernel density modeling. We provide a fixed point algo-
rithm to find the covariance matrix for a Gaussian kernel ac-
cording to this criterion. We show that the algorithm leads
to accurate models in terms of entropy estimation and Parzen
classification. By means of a set of experiments, we show that
the method considerably improves the performance tradition-
ally expected from Parzen classifiers. The accuracy obtained
in entropy estimation suggests its usefulness in ICA and other
information-theoretic signal processing techniques.

1. INTRODUCTION

Non-parametric density estimation, also known as kernel or
Parzen density estimation, is a popular tool in statistics and
signal processing [1]. Although non-parametric density es-
timation seems to refer to a free-parameter approach to the
problem of density modeling, the fact is that the accuracy
of the model does significantly depend on the bandwidth of
the chosen kernel. Non-parametric models are constructed by
means of windows or kernels centered on the data. The prob-
lem of searching the optimal width is commonly referred to
as bandwidth selection or smoothing factor selection.

Bandwidth selection has been paid much attention by sta-
tisticians, especially in the one-dimensional case. An exten-
sive compilation of methods can be found in [2]. In the mul-
tivariate case, each variable is often treated separately, and a
model is independently built for each dimension.

Cross-validation techniques are based on a leave-one-out
procedure, according to which the model evaluated on a train-
ing sample is built from the rest of samples [3]. A commonly
used criterion for the evaluation of the model is the Integrated
Square Error (ISE)

∫ |p̂ − p|2, which is also used in plug-in
and bootstrap methods [4].

Maximum Likelihood (ML), in a cross-validation setting,
was first proposed in [5]. However, it has been criticized be-
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cause of its slow rate of asymptotical convergence to the true
density, when compared to ISE. In addition, some problems
have been reported when applied to heavy-tailed distributions
[3].

However, in the following we encourage the use of the
ML criterion because of its suitability for entropy estimation
and Par-zen classification. A Parzen classifier takes a ML
or a maximum a-posteriori decision based on the models ob-
tained for each class. Although not considered a state-of-the-
art classifier, it is proven to provide an error tending to Bayes
error, as soon as the models tend to the true densities [6]. We
center our study on the Gaussian kernel, since it permits the
adjustment of a covariance matrix that can take into account
correlation among variables.

In Section 2 we describe the leave-one-out Maximum Like-
lihood (LOO ML) procedure, and introduce two versions of
a simple and efficient fixed-point algorithm to solve it, each
one corresponding to different assumptions about the kernel
covariance matrix. In Section 3, we analyze the performance
of LOO ML models in a set of entropy estimation and clas-
sification experiments, and compare it to other methods. The
paper finishes with some remarks in Section 4

2. A FIXED-POINT ALGORITHM FOR
LEAVE-ONE-OUT ML ESTIMATION

Let X = {x1, . . . ,xN}T be a set of samples from the D-
dimensional random variable x, according to which we con-
struct our Parzen model p̂(·). The density estimation at a
given point is:

p̂(x) =
1
N

N∑
j=1

G(x − xj ,C)

where G(·,C) is a centered Gaussian with a covariance ma-
trix C. Although other kernel functions can be used, the
Gaussian is the most commonly employed. In this case, the
bandwidth selection problem consists in finding the optimal
C.
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In parametric modeling, C is given by the empirical co-
variance of the data. In semi-parametric models, the matrix
can be obtained by the EM algorithm, which also makes use
of the ML criterion. In non-parametric modeling, ML crite-
rion can not be directly applied. In the case of one dimension,
if the width of the window is to be optimized by a ML crite-
rion, the solution converges to σ = 0, so that the likelihood
becomes infinite. Thus, the model strongly overfits to data if
there are not additional constraints.

In order to avoid this overfitting, the following model can
be used when evaluated on samples xi from the training set:

p̂(xi) =
1

N − 1

N∑
j=1
j �=i

G(xi − xj ,C)

In the following, we refer to this as the leave-one-out (LOO)
Parzen model. Its corresponding log-likelihood is given by:

log L(X,C) =
∑

i

log p̂(xi)

=
∑

i

log
(

1
N − 1

∑
j �=i

G(xi − xj ,C)
) (1)

assumed that the xi are i.i.d. Now, the ML criterion can be
applied on this model, and leads to a fixed-point algorithm
that converges to a finite value. We present two versions of
the algorithm: the first one assumes a spherical shape for C,
so that the width is the same in each dimension and there is
not any local interaction. The second tackles the general case,
with no constraints on C.

2.1. Spherical covariance matrix

The use of a spherical covariance matrix is equivalent to mod-
eling the different variables separately, with the same width.
Thus, we assume the shape C = σ2ID. In this case, the value
of a Gaussian is given by:

Gij(σ2) = G(xi − xj , σ
2)

= (2π)−D/2σ−D exp
(
− 1

2σ2
‖xi − xj‖2

)

And the value of its derivative is:

∇σGij(σ2) =
(‖xi − xj‖2

σ3
− D

σ

)
Gij(σ2)

The derivative of the log-likelihood, according to this, is:

∇σ logL(X, σ2) =
∑

i

1

p̂(xi)

1

N − 1

∑

j �=i

∂

∂σ
Gij(σ

2)

=
1

N − 1

∑

i

1

p̂(xi)

∑

j �=i

‖xi − xj‖2

σ3
− D

σ
Gij(σ

2)

We search for the maximum of log L(X, σ2), so that its deriv-
ative is null. Then we have:

∑
i

1
p̂(xi)

∑
j �=i

‖xi − xj‖2

σ3
Gij(σ2) =

∑
i

1
p̂(xi)

D

σ

∑
j �=i

Gij(σ2)

=
N(N − 1)D

σ

This leads to the following fixed-point algorithm, which
is obtained by isolating the σ2:

σ2
l+1 =

1
N(N − 1)D

∑
i

1
p̂l(xi)

∑
j �=i

‖xi − xj‖2Gij(σ2
l )

(2)
where p̂l denotes the Parzen estimation in iteration l (i.e. the
one that uses σ2

l ).

2.2. Full covariance matrix

The general expression for a Gaussian kernel with an arbitrary
matrix C is:

Gij(C) = |2πC|−1/2 exp
(
−1

2
(xi − xj)T C−1(xi − xj)

)

Its derivative is:

∇CGij(C) =
1
2

(
C−1(xi − xj)(xi − xj)T − I

)
C−1Gij(C)

As in the spherical case, we make the derivative of the
log-likelihood from Eq. 1 null, which leads to the fixed-point
algorithm:

Cl+1 =
1

N(N − 1)

∑
i

1
p̂l(xi)

∑
j �=i

(xi−xj)(xi−xj)T Gij(Cl)

(3)
A full covariance matrix leads to more flexible models,

so that it yields higher likelihood values. However, it suffers
from overfitting more intensively than in the spherical case,
because of the higher number of parameters (the elements of
C) involved.
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3. EXPERIMENTS

Here, first we use a set of examples to show the performance
of the LOO ML algorithm of Eqs. 2 and 3 when applied to
entropy estimation. Secondly, we provide a set of classifica-
tion experiments to compare the performance of the method
to other classifiers’.

3.1. Entropy Estimation

Here, the validity of LOO ML for entropy estimation is ex-
plored by its application to synthetic Gaussian and Uniform
multidimensional distributions. The estimation of the entropy
is given by:

ĥ(x) = − 1
N

∑
i

log p̂(xi)

3.1.1. Multidimensional Gaussian

Our estimator has been applied to two multidimensional Gaus-
sian distributions with covariance matrixes

(
2 0.5

0.5 1

)
and(

3 0.7 0.2
0.7 2 0.5
0.2 0.5 1

)
. In Table 1, the value of the entropies esti-

mated by the two versions of our method are compared to
the one given by another bandwidth selector, and an entropy
estimator that is not based on Parzen. The bandwidth selec-
tor is a multivariate generalization of Scott’s rule. It chooses
C = N

−2
D+4 Σ, where Σ is the empirical covariance of X.

This estimation is optimal in terms of ISE for a Gaussian
distribution [7]. The other method for entropy estimation is
due to Kozachenko-Leonenko, and it is based on a nearest-
neighbour procedure [8]. In this case, full LOO ML provides
the best estimations, although the one by Scott’s rule is very
close. This fact proves the validity of Scott’s rule even from a
ML point of view.

Table 1. Entropy estimation of Gaussian distributions. 500 samples
have been used

D Sph. ĥ Full ĥ Scott K. L. Real h
2 3.197 3.189 3.191 4.142 3.118
3 5.135 5.107 5.115 6.251 5.043

3.1.2. Multidimensional Uniform

Here, we apply the spherical LOO ML to the modeling of
data generated by a uniform distribution in 1, 2, 5 and 10 di-
mensions, and three different sample sizes. The width has
been tuned around the width obtained by LOO ML. We have
plotted the result of estimating the entropy from a Parzen
model with the different widths considered, and stressed the
point found by LOO ML. The results are shown in Fig. 1.
In all cases LOO ML reaches the minimum, so that it obtains
the value that is closest to the true value.

Two interesting conclusions from the curves are:

• The accuracy in the entropy estimation is higher as the
sample size becomes larger.

• The behavior of the optimal width with respect to N
and D does not seem to disagree with the asymptotic
factor traditionally modeled by N

−2
D+4 [7].
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Fig. 1. Window width and estimated entropy from 100 (circles),
200 (squares) and 500 (diamonds) samples from multidimensional
uniform distributions of 1, 2, 5 and 10 dimensions in [0,1]. The
vertical dashed lines mark the LOO ML bandwidth

3.2. Parzen Classification

Here we display the result of applying the LOO ML models
to Parzen classification. A Parzen classifier assigns an incom-
ing sample x the class k given by a ML criterion on the mod-
els built for each class:

ŷ = arg max
k

p̂k(x) (4)

where p̂k(·) is the Parzen model of class k. We have carried
out two experiments. First, we tune the window width of a
spherical Parzen model in a toy example, to show the suitabil-
ity of LOO ML in terms of classification error. After that, we
display the performance of a Parzen classifier when applied
to some public datasets.

3.2.1. Synthetic Data

We have generated data according to a five-dimensional spher-
ical Gaussian distribution N(0, I5). The labels have been
generated by the function sign(x4x5). The performance of
the Parzen classifier has been plotted for the optimal band-
width, together with the performance obtained by a set of val-
ues around it. The results in Fig. 2 show that the width found
by LOO ML is the optimal one in terms of classification per-
formance.
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Fig. 2. Average (100 trials) accuracy of the Parzen classifier as a
function of the window width in the synthetic problem. The datasets
have 200 samples

3.2.2. Real Data

Although the Parzen classifier is a simple and sub-optimal
one, here we compare the performance of the two versions
of LOO ML with:

• Another Parzen classifier where the Scott’s rule has been
used for bandwidth-selection, as described above.

• Two discriminative-type classifiers: the K-nearest-neigh-
bour (KNN) [9] and the Support Vector Machine (SVM)
[10]. Note that these methods do not provide proba-
bilistic values at their output.

The experiments have been carried out on the Pima, Wine
and Landsat datasets from the UCI public repository 1. The
performance of Parzen classification is tested for the two ver-
sions of LOO ML. Each training dataset is used for both train-
ing the model and the classifier, which are then used to clas-
sify the testing set.

The results are displayed in Table 2. Although a full shape
is expected to provide the best result, it does not hold in the
case of Landsat. This dataset consists of hyperspectral images
from satellites, according to which the kind of soil must be de-
termined. The fact that the spherical approach performs better
in this case is due to the number of free parameters involved,
which is far higher in the full approach than in the spherical
one. The number of parameters is 1 in the spherical case, and
D(D + 1)

2
in the full case. Thus, in such high-dimensional

problems, the full approach suffers from a stronger overfit-
ting, which suggests the use of the spherical approach instead.

Although a purely discriminative method like SVM ob-
tains a better performance, Parzen provides a-posteriori prob-
abilities. There are many situations in which a probabilis-
tic interpretation of the result is required. An advantage of
Parzen classifiers is that it provides such interpretation.

1http://www.ics.uci.edu/ mlearn/MLRepository.html

Table 2. Classification accuracy (in percentage) on public datasets.
Nc is the number of classes

Dataset Nc/D Sph. P. Full P. Scott KNN SVM
Pima 2 / 8 71.22 75.00 73.05 73.18 76.47
Wine 3 / 13 78.10 99.44 99.44 76.97 100
Landsat 6 / 36 89.45 86.10 84.85 90.60 90.90

4. DISCUSSION AND FUTURE WORK

We have shown the suitability of a Maximum Likelihood choice
of the covariance matrix in Gaussian Parzen models, by means
of a fixed-point algorithm based on a leave-one-out proce-
dure. Although the algorithm has converged in all the cases
explored so far, a future effort must be carried out to prove its
convergence. The accuracy of the method when estimating
multivariate entropy suggests a promising application in the
ICA framework and other information-theoretic approaches,
as for example feature extraction. The good performance ob-
tained by Parzen classifiers trained with LOO ML makes this
method appropriate for classification problems in which prob-
abilistic interpretations are needed.
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