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ABSTRACT

This paper considers sequential detection problems where we
learn from sets of training sequences. The sufficient statis-
tics can be learned quickly using a least squares temporal dif-
ference (TD) learning algorithm. This algorithm converges
much quicker than previously applied TD learning algorithms.
The algorithm can easily be implemented in an on-line man-
ner and can also be applied to more complicated decentralized
detection problems.

1. INTRODUCTION

This paper extends earlier research on sequential detection
where we learn from sets of training sequences [6]. In the
earlier research we used a popular reinforcement learning al-
gorithm, Temporal Difference (TD) learning [12]. A learning
algorithm was designed to learn the sufficient statistics of the
sequential detection problem given training sequences. The
training sequences were of varying length and were drawn
from the Sequential Probability Ratio Test (SPRT) designed
by Wald [15]. The TD learning algorithm learned the suffi-
cient statistics and given enough training sequences, the al-
gorithm approximated the SPRT closely. The major problem
with the TD learning algorithm is that learning was slow and
was sensitive to parameter adjustments such as the step size
µ and the TD λ value. More powerful reinforcement learn-
ing algorithms have been developed [4, 5, 8] that are based on
least squares methods combined with TD learning algorithms.
In this paper we apply the Least Squares TD (LSTD) λ al-
gorithm developed by [4] to learn sufficient statistics given
SPRT training sequences. We demonstrate through simula-
tions that the algorithm requires more than an order of mag-
nitude less iterations than using the TD λ learning algorithm.

In many applications of gathering data such as sensor net-
works [1], users are constrained by communication constraints.
There is a cost to transmitting information over sensor net-
works and a goal is to make good decisions once sufficient
information is gathered. As an example consider the PODS
project where sensors are placed at remote locations in Hawaii

to monitor endangered plant species. Data is gathered to de-
termine if these plant species are healthy or not. For this
type of scenario sequential tests are preferable to fixed sample
tests. In a fixed sample test, a set amount of data is gathered
and then a decision is made. In a sequential test data is gath-
ered until sufficient information is retrieved to make a deci-
sion. It has been shown that sequential tests achieve the same
performance as fixed sample tests with less than half the data
samples [15].

In this paper we consider pattern recognition problems
where we learn from training data. The vast majority of work
uses fixed sample tests where supervised learning algorithms
such as multi-layer feedforward networks, Radial Basis Func-
tions, or Support Vector machines are used [7, 9]. There is
very little work on learning training data from sequential de-
tection problems. A goal of this paper is to design a com-
putationally efficient learning algorithm to be able to learn
from training sequences. Here we extend the work in [6] to
apply the LSTD algorithm to sequential detection problems.
A goal is to design a computationally efficient algorithm that
can also be implemented on-line and can be applied to more
complicated decentralized sequential detection problems.

The paper is organized as follows. In Section 2 we dis-
cuss the TD λ learning algorithm and the LSTD λ learning
algorithm. Section 3 gives a brief discussion of sequential de-
tection and Wald’s SPRT. Section 4 implements the TD λ and
the LSTD λ learning algorithm for the sequential detection
problem. Section 5 presents some simple simulation results
showing the computational advantages of the LSTD λ algo-
rithm. Finally, Section 6 discusses extensions of this work to
learning on-line, applying LSTD λ to decentralized sequential
detection problems, and modifications of the algorithm using
kernels.

2. TD AND LSTD ALGORITHMS

The Temporal Difference (TD) learning algorithm was devel-
oped in [12] and has been used in many applications from
learning absorption probabilities in a Markov chain to path
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navigation to learning how to play backgammon to solving
the policy iteration step for dynamic programming problems
[2, 13]. TD learning is easy to implement for look up tables
or for function approximation using linear functions. Here
we will consider linear functions. Given an observation xk ∈
Rn, we let Φ(xk) = (φ1(xk), . . . , φd(xk))T denote the fea-
ture vector and let

ŷ(xk) = wT Φ(xk) (1)

denote the estimate of a function y(x) where w is a weight
vector that is learned. One iteration cycle of the TD λ learning
algorithm can be described as follows [4]:

TD λ iteration

i) Initialization: set change ∆ = 0 and get input sequence
x1, . . . , xN . Set v1 = Φ(x1) and t = 1.

ii) While t ≤ N ,

∆ ← ∆ + vt(Rt + (Φ(xt+1) − Φ(xt))T w, update
weight change with Rt being reward.

vt+1 = λvt + Φ(xt+1), update modified feature vec-
tor.

t ← t + 1.

iii) w ← w + µ∆.

Here µ is the step size. This algorithm is a gradient ap-
proximation algorithm and we would like to know when it
converges. We get mean convergence when

E(w) = E(w) + µ(b + Aw + u) (2)

where

b = E(
∑

t

vtRt) A = E(
∑

t

vt(Φ(xt+1)−Φ(xt))T) (3)

and u is zero mean noise with small variance. In order for
(2) to be satisfied we must have b + Aw = 0 and this is the
basis of the least squares algorithm [4] where we approximate
both b and A by training samples. A cycle of this algorithm is
described as follows [4]

LSTD λ iteration

i) Initialization: set change A = 0, b = 0 and get input se-
quence x1, . . . , xN . Set v1 = Φ(x1) and t = 1.

ii) While t ≤ N ,

A = A + vt(Φ(xt)−Φ(xt+1))T , update data matrix.

b ← b + vtRt, update data vector with Rt being re-
ward.

vt+1 = λvt + Φ(xt+1), update modified feature vec-
tor.

t ← t + 1.

iii) w = A−1b.

The LSTD λ algorithm developed in [4] extends the work of
[5] who developed LSTD λ = 0 algorithm. In general, least
squares algorithms have higher complexity per iteration than
gradient approximation algorithms, but converge in much fewer
iterations.

3. SEQUENTIAL DETECTION

Let {Xk; k = 1, 2, . . . } be a sequence of independent and
identically distributed (iid) random variables with observa-
tions drawn according to

H0 : Xk ∼ f(xk; θ0), k = 1, 2, . . .
versus

H1 : Xk ∼ f(xk; θ1), k = 1, 2, . . .
(4)

where f(x; θ) is the probability density function of Xk given
the parameter θ .

Let Xt be the vector of t observations, Xt = (x1, . . . , xt)
(t ≥ 1), and let zt be the logarithmic likelihood ratio based
on Xt,

zt = log
ft(Xt; θ1)
ft(Xt; θ0)

(5)

where ft(Xt; θ) is the joint density function of Xt given θ.
Let

l(xk) = log
f(xk; θ1)
f(xk; θ0)

. (6)

For iid observations we have that

zt =
t∑

k=1

l(xk). (7)

Then Wald’s sequential probability ratio test [15], de-
noted by SPRT (b, a), with b < 0 < a for ( 4) is defined as
(initially set t = 1),

i) if zt ≤ b, accept H0 and stop;

ii) if zt ≥ a, accept H1 and stop;

iii) if b < zt < a, continue sampling by observing xt+1

(t ← t + 1, goto i));

where a and b (−∞ < b < a < ∞) are detection bound-
aries. The detection boundaries are set so that the false alarm
rate is α and the miss probability is β where these quantities
are defined by

α = P (D = H1 | H0), β = P (D = H0 | H1), (8)
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where D is the decision rule. It can be shown [15] that a and
b satisfy

a ≤ log
1 − β

α
, b ≥ log

β

1 − α
. (9)

Practically, we choose the following detection boundary
where we use a′ and b′ instead of a and b where

a′ = log
1 − β

α
, b′ = log

β

1 − α
. (10)

These boundary values are chosen because they are easier to
compute than a and b and in many practical cases a′ ≈ a and
b′ ≈ b. Wald proved that when SPRT (b, a) is used, the de-
tection procedure terminates and minimizes the average sam-
ple size among all tests while keeping the error probabilities
at values α and β [15].

4. LEARNING SEQUENTIAL DETECTION
TRAINING SEQUENCES

Here we apply TD and LSTD learning algorithms to learn
the sufficient statistics of the binary sequential detection prob-
lem in Section 3. We are given a set of SPRT sequences and
know the values of the false alarm probability α and the miss
probability β. Sequential detection can be viewed as dynamic
programming problem [15] and we can formulate the two re-
inforcement learning algorithms of Section 2 to learn the suf-
ficient statistic given the set of training sequences.

The sequential detection problem can be viewed as a Markov
process with two absorbing boundaries. We are given se-
quences drawn from both H0 and H1. A reward of a is achieved
when we hit the upper boundary and a reward of−b is achieved
when we hit the lower boundary. If we have not terminated
the sequence no rewards are given. Our goal is to learn the
sufficient statistics. For Gaussian iid scalar random variables
the sufficient statistic is completely described by

st = c0t + c1

t∑

i=1

xi + c2

t∑

i=1

xi
2. (11)

Many other random variables can also be described by the
above sufficient statistic st. Here our goal is to learn the
weights w such that w ≈ c. The feature vectors for this
problem are given by φ1(t) = t, φ2(t) =

∑t
i=1 xi, and

φ3(t) =
∑t

i=1 xi
2. This is a slightly different model than

presented in Section 2 as now Φ(t) depends on (x1 . . . xt)
and not just xt.

For vector random variables, other more complex random
variables, and dependent random variables we can use other
functions such as kernel functions to approximate the suffi-
cient statistic. The key to the sufficient statistic approximation
is that it is a linear function of the feature vector Φ(t).

5. SIMULATIONS

We conducted simulations for different sequential detection
tests. Here we present a simple example illustrating some
of the advantages of the LSTD λ algorithm. Under H1, the
conditional random variable is Gaussian with mean 1 and
variance 1. Under H0 the conditional random variable is
Gaussian with mean 0 and variance 1. We set β = α = .01
resulting in a = −b = 4.5951. Here a sufficient statistic is
given by the log-likelihood ratio with l(x) = −.5 + x. In our
simulations the quadratic term should be close to 0 or w2 ≈ 0.
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Learning sequential data from LSTD algorithm

Fig. 1. LSTD algorithm applied to learn Gaussian sequences.

The LSTD algorithm is easy to implement as there are
no parameters to set except for λ. Results are shown for
λ = 0, .3, .5, 1. The curves show averages of 100 simula-
tions. Note that the algorithm is not sensitive to the choice of
λ as all curves are almost identical. We define convergence
loosely as four time constants if we model the curve as an
exponentially decaying function. The LSTD algorithm con-
verges very quickly as after 100 sequences it has achieved a
mean squared error rate of less than .05 (norm squared value
of the weight error).

By contrast the TD algorithm was very sensitive to λ val-
ues and a suitable step size must also be chosen. We chose a
step size of µ = .01/(.01t+1). This seemed to work reason-
ably well. The TD algorithm also had difficulties converging
for values of λ near 1. Even for small values of λ, the algo-
rithm took much longer to converge than LSTD. For λ = .1
the algorithm needed to learn more than 2000 sequences be-
fore it converged. For larger values of λ more than 10000
sequences were needed until convergence was achieved. The
TD algorithm also had many more wild fluctuations before
converging. Weight magnitudes would often become very
large before converging to the desired sufficient statistic val-
ues. The TD algorithm also had difficulties with longer se-
quences. The average sequence length was about 10.5. For
sequences longer than 40, weight changes would be large re-
sulting in larger magnitude weights. The TD algorithm im-
proved some when longer sequences were not used. For the
simulation conducted we found that the iteration cost for the
TD and LSTD were almost the same as the LSTD algorithm
only needed to invert 3 by 3 matrices.
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6. DISCUSSION AND EXTENSIONS

This paper discussed a computationally efficient method to
learn the sufficient statistic of a binary sequential detection
problem from seeing SPRT training sequences. The SPRT
training sequences cannot be learned using conventional su-
pervised learning algorithms as there is a problem of credit
assignment. The reward is only gotten at termination and the
sequences are of variable length. In previous work we found
that the reinforcement learning algorithm, TD learning was
capable of learning sufficient statistics given SPRT sequences
[6]. The TD learning algorithm is slow and we found that
the LSTD learning algorithm by [4] achieved a speed up of
between 10 and 100.

There are many further extensions for this work. An on-
line version of LSTD can easily be applied to update the weights
at each update. The algorithm would be similar to recur-
sive least square algorithms and each iteration would find the
weight values in O(d2) instead of O(d3) operations that are
required to invert a matrix. An on-line algorithm would also
be able to perform other tasks such as tracking and processing
of time varying data.

We will also consider using LSTD algorithms for decen-
tralized or distributed detection problems. Here local detec-
tors gather information from sensors and send quantized in-
formation to a fusion center which then makes a decision. In
[11], a fixed sample sized decentralized sequential detection
problem is considered with learning performed using mar-
ginalized kernels. An optimization problem is formulated to
find the kernels and associated weights. This problem could
be extended to sequential detection where the fusion center
sends feedback information to the local detectors. For the
parametric problem where conditional densities are known
the problem is formulated as a dynamic programming prob-
lem [14]. When densities are unknown we can possibly solve
the problem using LS Policy Iteration (LSPI) as discussed in
[8]. We could also formulate suboptimal approaches where
local detectors do not receive feedback information from the
fusion center. Different forms of the LSTD algorithm could
make intelligent decisions under these constraints.

Since the LSTD algorithms give good performance with
relatively low complexity there would be interest in applying
the algorithms to real decentralized detection problems such
as sensor networks. Kernel learning algorithms have been
used to perform sensor localization for real sensor networks
[10]. LSTD algorithms could easily be applied to sensor net-
works to perform sequential detection or even estimation of
parameters.
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