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ABSTRACT 

The One-Against-All (OAA) is the most widely used 

implementation of multiclass SVM. For a K-class problem, 

it performs K binary SVMs designed to separate a class 

from all the others. All SVMs are performed over the full 

database which is, however, a time-consuming task 

especially for large scale problems. To overcome this 

limitation, we propose a mixture scheme to speed-up the 

training of OAA. Thus, each binary problem is divided into 

a set of sub-problems trained by different SVM modules 

whose outputs are subsequently combined throughout a 

gating network. The proposed mixture scheme is based on 

Sugeno’s fuzzy integral in which the gater is expressed by 

fuzzy measures. Experiments were conducted on two 

benchmark databases which concern Handwritten Digit 

Recognition (ODR) and Face Recognition (FR). The results 

indicate that the proposed scheme allows a significant 

training and testing time improvement. In addition, it can be 

easily implemented in parallel. 

1. INTRODUCTION 

Due to their strong learning ability and high generalization 

performance compared to conventional classifiers such as 

Naïve Bayes and artificial neural networks, Support Vector 

Machines (SVMs) are used in a wide range of applications. 

However, their major limitation is that the learning time is at 

least quadratic to the number of training data. Thereby, for 

large scale problems such as face and handwriting 

recognition where data have high dimensions, the training 

of SVMs is a time-consuming task. Specifically, the training 

complexity increases if several classes are included. Since 

SVMs are originally formulated for binary classification, 

their extension to multiclass  problems is not unique. The 

earliest and the most commonly used implementation for 

multiclass SVM is the One-Against-All (OAA) method. For 

a K-class problem, it constructs K SVMs trained 

respectively, to separate a class from all the others. Each 

SVM is performed over the full database and  the training 

time is proportional to 2TK , where T is the number of 

training samples. Thus, using the same number of data, the 

resolution of a multiclass SVM is computationally much 

more expensive than a binary SVM [8].  

Many research works have been done over the past few 

years to speed up the SVM training. Interestingly, we notice 

the mixture scheme introduced in [7]. The underlying idea 

consists of using different experts in different regions of 

input space. Thus, the original problem is divided into a set 

of sub-problems easier to learn.  Each sub-problem is 

trained by a particular SVM. Then, outputs of trained 

modules are combined by a gater which is generally an 

artificial neural network trained on the whole database [5]. 

To mitigate this issue, [6] proposed the use of local gaters 

trained only over their own sub-problems.  However, the 

use of such gaters is not trivial in practice. First, many 

iterations are required to train the neural network, which 

will compromise the aim of mixture that is training time 

reduction. Besides, the user is faced to a large variety of 

learning rules and possible architectural selections. More 

recently, a Min-Max modular SVM approach was employed 

in [8] to speed up text categorization. Unfortunately, the 

modularity concept as well as experimental analysis were 

drawn independently for each class, which is different to the 

multiclass reasoning.   

In the work presented here, we propose the use of 

mixture concept to speed up the OAA SVM method. 

Another contribution of this paper consists of using 

Sugeno’s fuzzy integral as a mixture scheme in which local 

gaters are expressed by fuzzy measures. The main 

advantage of our approach is that there is no need to any 

training stage or parameter selection. Furthermore, this 

scheme was successfully used for mixtures of binary SVMs 

using the USPS handwriting task in [9]. Presently, 

experiments are conducted on two different applications 

which are ODR and face recognition using standard 

databases. In the next section, we briefly review SVMs for 

binary and multi-class problems. In addition, we introduce 

the fuzzy integral-based mixture. Experimental results are 

presented and discussed in section 3 while the last section 

gives the main conclusions of the paper. 
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2. THEORETICAL CONCEPTS 

2.1. Support vector machines 

SVMs construct binary classifiers from a set of training 

examples such that: njRyx N
jj ,,1,1,  [1, 10].

The data are mapped into a dot product space via a kernel 

function such that: xxxxK ,, . Then, the 

solution is expressed in terms of kernel expansion as: 

Sv
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jj bxxKsignxf
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Sv is the number of support vectors which are training data 

for which Ci0 , while the bias b is a scalar. Note that 

C is the cost parameter. Furthermore, a large number of 

mathematical functions are eligible to be a SVM-kernel. 

Here, we use the Radial Basis Function kernel given in (2) 

( and C are user defined parameters). 
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The earlier extension of SVMs for multiclass problems 

is the One-Against-All (OAA) approach. For a K-class 

problem, K classifiers are performed to separate iteratively 

each class from all the others. Therefore, a sample x  is 

assigned to the class with the maximum positive output.  
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2.2. Fuzzy integral-based mixture 

The basic idea of mixture is to break a complex learning 

problem into a set of sub-problems each of which is trained 

by a SVM module [5, 7]. Then, module outputs are linearly 

combined by a gater according to: 

xxfy
n

i
i

1

 (4) 

xfi is the  output of the ith expert for a sample x.  is the  

gater output while n is the number of experts (SVMs). To be 

efficient, the gating network needs a long training stage 

with a carefully parameter selection. To overcome this 

limitation, we adapt the fuzzy integral-combination rule to 

the mixture concept. The fuzzy integral combines non 

linearly, objective evidences in the form of expert decisions 

with respect to subjective evaluation of their performance 

expressed by a fuzzy measure. Various forms of the fuzzy 

measure are available in literature. The most widely used is  

the so-called g  measure. Our approach can be 

summarized in four main steps. First, a two-class problem to 

separate a class k from non class k is divided into a set of 

small two-class problems each of which is trained by a 

SVM module. Then, SVM outputs are handled through a 

fuzzy model to express their membership degrees in positive 

classes. For each class, membership degrees derived from 

all SVMs are combined with respect to fuzzy measures to 

calculate the fuzzy integral. Finally, mixture responses are 

compared according to the conventional OAA decision 

function to classify data. 

2.2.1. g  fuzzy measure

The g  fuzzy measure is defined to satisfy the following 

property [2, 3]: Let nzzZ ,,1  be the set of available 

experts. For each expert iz  to be combined, we associate a 

fuzzy measure ik zg  indicating its performance in the 

class k. For a given sample, let ik zh  be the objective 

evidence of the expert iz  in the class k. The set of experts is 

then rearranged such that the following relation holds: 

01 nkk zhzh . Thus, we obtain an ascending 

sequence of SVMs ii zzA ,,1 , whose fuzzy measures 

are constructed as:  

11 zgAg kk

ikikikik

iikik

zgAgzgAg

zAgAg

11

1
 (6)   

For a class k,  is the unique  root of a n-1 degree equation        

that is [,..,1]  and 0 . It is determined by solving 

the following equation: 

n

i
ik zg

1

11  (7)  

The relation in (6) provides both the weight of a single 

expert and the weight of a subset of experts. Unfortunatly, 

there is no rule which would be followed to attribute kg

values. They can be subjectively assigned by the user, or 

generated from training data [2].  

2.2.2. Fuzzy integral

The fuzzy integral SI , of a function ]1,0[: Zh  with 

respect to a fuzzy measure g over Z is computed by [2-4]:

ikik

n

i
S AgzhMinMaxkI ,

1
 (8)  
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2.2.3. Fuzzy membership model

Once trained, the SVM output is either positive or negative. 

However, the fuzzy integral involves the use of objective 

evidences. We propose in what follows a fuzzy model to 

express membership degrees of SVM outputs in the positive 

classes (note that there is no need to evaluate the 

membership degrees in negative classes, since they cannot 

inform about the appurtenance of the object to a particular 

class). Let x
iz

f  be the output of the SVM iz obtained for 

an object x to be classified. Its membership izh   in the 

positive class is defined as: 

Table 1.  Fuzzy class membership model 

If 1x
i

f z then 1izh

Else

If 1x
i

f z then 0izh

Else

2

1 x
i

f
zh

z
i

According to this fuzzy model the decision functions of all 

positive classes calculated through the fuzzy integral are 

compared to classify data such that: 

kIS

K

k 1
maxarg  (9) 

3. EXPERIMENTAL RESULTS 

The validity of the proposed scheme is investigated on two 

different problems of pattern recognition which are Optical 

Digit Recognition (ODR) and Face Recognition (FR) using 

standard databases. ODR experiments are conducted on  

USPS handwriting recognition task. This database contains 

gray-level images of ten numeral classes (0-9), extracted 

from US postal envelopes. All images are normalized to a 

size of (16 16) pixels yielding 256 dimensional datum 

vector. This database contains a large number of data (9298 

character), which is very difficult to train with the OAA. 

Thereby, we selected 1200 samples for the training stage 

and 300 samples for the test stage. Furthermore, the FR 

experiments are carried out using the Cambridge ORL 

database which contains 40 classes (each person 

corresponds to a distinct class). For each person, there are 

10 images taken against a dark homogeneous background 

with different facial expressions such as open or close eyes, 

and smiling or not smiling, etc. The images have a size of  

(112 92) pixels yielding a 10304 dimensional input vector. 

For all classes, 5 images were randomly selected to be used 

in the training stage while the others were used in the test 

stage. For both applications, training and testing data are 

adjusted to [0, 1]. 

Before performing the mixture tests, C and  were 

tuned experimentally using a subset of both databases. 

Several SVMs using different kernel and cost parameters: 

150,,1  and ]500,,1[C , were performed. Then, 

the pair which achieves the smallest error rate was retained 

for the mixture tests. Thus,  for  OCR 10,500,C  and 

for FR 150,100,C .

 Furthermore, we have shown in [9] that for binary 

SVMs, the fuzzy integral-based mixture allows a Training 

Time Reduction (TTR) which reaches 82.79% by using only 

2 modules. Presently, we attempt to use mixtures of 2 and 3 

modules to reduce the Training Time (TT) as well as the 

Recognition Time (RT) of the OAA method without 

reducing the Overall Recognition Rate (ORR).  The fuzzy 

measures are assigned by calculating the ORR of the trained 

modules over the whole database. The results obtained for 

ODR and FR databases are displayed in figures 1 and 2, 

respectively. These figures depict in addition to the ORR, 

the Relative Training and Recognition Times, namely, RTT 

and RRT calculated as: 

1TT

TT
RTT i

i  ,  
1RT

RT
RRT i

i

4,3,2i  and designates the number of modules in the 

mixture while 1i  designates the SVM trained over the full 

database.  

As can be seen, for both problems, the training and the 

recognition speeds grow rapidly according to the number of 

modules. Specifically, for ODR using 2 modules the RTT 

and the RRT are about 53% and 36.36% with respect to the 

times required to solve the whole problem, and are less than 

30% with 3 modules. Moreover, there is a clear 

performance improvement in ORR compared to the single 

module. Similarly, the results obtained for the FR problem 

show that the RTT and RRT decrease rapidly using 2 and 3 

modules while keeping the same performance as the SVM 

trained over the whole database. However, above 3 

modules, the TTR and the RRT decrease slightly whereas 

the ORR is bed. This outcome is related to the fact that 

when the modules become very small compared to the 

whole database, they have weak generalization abilities  

(small g values) since they do not contain enough training 

data. This leads systematically to an accuracy lower than 

that of the SVM trained on the original problem.  
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Fig 1. Mixture performance against the single 

 SVM performance (ODR database) 
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Fig 2. Mixture performance against the single 

SVM performance (FR database) 

4. CONCLUDING REMARKS 

We have presented a new mixture  for SVMs  which was 

employed to speed up the OAA multiclass SVM method. In 

this approach, a problem designed to separate a class from 

all other classes is divided into a set of sub-problems trained 

separately and combined by using the fuzzy integral. 

Trained modules produce complementary information about 

the data included in the gater which is expressed by fuzzy 

measures generated from the original problem. Moreover, 

the main advantage of this mixture scheme is that the gater 

does not need a training stage in contrast to conventional 

gaters such as neural networks. Experiments were 

conducted on two pattern recognition applications 

containing different numbers of classes (10 classes for ODR 

and 40 for FR). The results obtained have shown that for 

both applications, the division of the original problem into 2 

and 3 modules, the mixture gives a significant improvement 

in training and testing speeds while keeping at least the 

performance of the SVM trained over the full database. 

Furthermore, this scheme can be easily parallelized to be 

again much more faster  since  it uses independent sub-

problems. 
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