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ABSTRACT

We describe and analyze a comprehensive learning model
to address issues such as consistency, convergence rate, and
sample complexity in the general context of system identifi-
cation. The learning model is based on unbounded loss func-
tions, and it incorporates a measure of algorithmic deficiency.
We define and use a novel formulation of algorithmic solution
that is an extension of the empirical risk minimization method
in the sense that it uses a generic notion of side information
as opposed to the commonly used input/output observation
of a system. Sufficient conditions for consistency as well as
closed form expressions for exponential convergence rate and
sample complexity of the identification algorithm are derived.

1. INTRODUCTION

Analytical results and arguments developed in the area of learn-
ing theory are quite insightful in treating other statistical in-
ference problems [1]. Potentially, this includes many applica-
tions in signal processing and communications such as hy-
pothesis testing, parameter estimation, pattern recognition,
channel estimation, system identification, filtering, prediction,
and echo control.

Learnability is a property that is attributed to a collection
of loss functions associated with a probabilistic model de-
fined by a collection of probability distributions. The main
challenge in verification of learnability for a given collec-
tion of loss functions is to prove analytical properties such
as uniform convergence in probability or almost sure uniform
convergence of a sequence of empirical risk functions. The
true risk function is defined as the expected loss over the side
information governed by a probability measure belonging to
the given probabilistic model. On the other hand, the empir-
ical risk functions are obtained by sample averaging the loss
functions over the given side information, which is the basis
of the most common learning method known as the empirical
risk minimization (ERM) method [1].

The existence of a rich literature in learning theory and
empirical processes is a great asset in dealing with similar
problems in statistical signal processing. However, certain
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considerations need to be applied to the existing learning mod-
els to accommodate the requirements in such applications.
First, the model used in signal processing applications should
incorporate algorithmic deficiencies due to finite precision or
finite computational resources. Second, many signal process-
ing applications use unbounded loss functions such as regres-
sion function, mean square error, and Kullback-Liebler dis-
tance. While many publications in learning theory address
the case of bounded loss functions, the case of unbounded
loss functions has not attracted much attention, yet.

Motivated by earlier efforts [2], [3], we address a more
comprehensive learning model for system identification. In
Section 2, instead of starting from the probably approximately
correct (PAC) learning model, we formulate the problem by
establishing a notion of solution operator for system identi-
fication. We then proceed to define a generic notion of side
information and algorithmic solution for this model which is
based on ERM and incorporates algorithmic deficiency. Do-
ing so, we aim to provide a more intuitive approach in artic-
ulating a broader range of applications in a learning-theoretic
framework. In Section 3, we provide sufficient conditions
for learnability, and we state and prove results on the rate
of convergence. In Section 4, we address a certain class of
unbounded loss functions with finite VC-dimension [1] and
describe the sample complexity in learning with these loss
functions. Section 5 gives some concluding remarks and fu-
ture research directions.

2. MATHEMATICAL FRAMEWORK

Let H ⊆ RNs be a compact set denoting the state space of
a system of dimension Ns. As a common signal processing
example, the state space might contain all possible acoustic
coupling paths between a loadspeaker and microphone in a
room where people can move around freely. Suppose the sys-
tem is in an unknown state h ∈ H, and we are given some
side information to identify/estimate the state of the system
in light of certain objective criteria. In the echo control ex-
ample, side information would be the pair of speaker and mi-
crophone signals, and the objective is to find an estimate for
the echo path to minimize a mean square error criterion. Let
(Ω, F ) be a measurable space and let P be a collection of
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probability measures, where for every P ∈ P , (Ω, F , P) is
a probability space. For the sake of generality, we use a com-
pact set G ⊆ RNt as the target space for identification, where
Nt ≤ Ns.

2.1. Solution Operator

To establish a comprehensive mathematical framework, we
first define a notion of problem and solution operator such
that given a problem element, one can find, at least in theory,
a solution for the problem element to within the desired accu-
racy. In the echo control example, the problem element is the
response of the unknown echo path, and the solution would be
an estimate of the impulse response within some desired ac-
curacy. We call an operator S: H×P×R+ → 2G a solution
operator provided that for every given h ∈ H, P ∈ P , and ac-
curacy ε ∈ R+, the nonempty set SP (h, ε) ⊆ G denotes the ε-
approximate P -solution set for h and SP (h, ε1) ⊆ SP (h, ε2)
if ε1 ≤ ε2.

Let U be a subset of a finite dimensional Euclidean space
called the uncertainty space and let {Un} be an independent,
identically distributed (i.i.d.) stochastic process such that at
each time instance n, Un : Ω → U models the uncertain ele-
ments that are present in system identification. Let L: H ×
G × U → R+, be a cost function describing the cost of ap-
proximating an element h ∈ H with an element g ∈ G when
the uncertain element is u ∈ U . The risk function is defined
as the expected loss of such approximation

JP (h, g) =

∫
L(h, g, u)dP. (1)

We define the solution operator such that

SP (h, ε) =

{
g ∈ G : JP (h, g) ≤ inf

g∈G
JP (h, g) + ε

}
(2)

describes the ε-approximation P -solution set for h. Assum-
ing analytical continuity of the risk function over G, one can
verify that (2) satisfies our definition of solution operator.

2.2. Algorithmic Solution

Most learning models are based on processing random side
information. That is, some random side information is given
about an unknown system state, and we are required to iden-
tify the unknown state with a certain desired accuracy. This is
a challenging problem due to uncertainties that occur because
of insufficient or corrupted side information.

Let O be a subset of a finite dimensional Euclidean space
called the observation space. Side information is generated
by a sequence of mappings I = (In)n∈N such that for each
n, In : H × Un → On called an information operator of or-
der n. We assume that In is formed as a stationary extension
of a function I : H × U → O called the information func-
tion. For an underlying pair (h, un), In generates a multi-
sample on = (oi)

n
i=1 ∈ On as side information. The objec-

tive is to find a sequence of mappings A = {An} such that

An : On×R+ → 2G where for given on ∈ On, on = (oi)
n
i=1,

and an algorithmic deficiency δ ∈ R+, An(on, δ) ⊆ SP (h, ε)
for arbitrarily high confidence as n becomes sufficiently large.
We call A a learning algorithm and An an algorithmic solu-
tion of order n. In the echo control example, the side infor-
mation is the sampled microphone and speaker signals and
the algorithm could be the common least mean square (LMS)
algorithm.

The most common approach in developing a learning al-
gorithm is empirical risk minimization (ERM). To describe
the ERM approach, we need to apply a restriction on the cost
function as follows. We assume there exists a loss function
Q : O × G → R+ such that for every h, g, and u, the cost is
defined as L(h, g, u) = Q(I(h, u), g). Under the operation
of In, and for a fixed but unknown h ∈ H, this induces a sto-
chastic process {On(h)}, called the side information process,
where at each time instance n, On(h) : Ω → O. Let Ph de-
note the induced distribution on O. As a result, we can de-
scribe the risk function as

JP (h, g) =

∫
Q(g, o)dPh. (3)

Let On(h, ω) denote the beginning segment of a realiza-
tion of the side information process, where for simplicity, we
denote it by on = (oi)

n
i=1. The empirical risk function is

defined as

J (n)(g) =
1

n

n∑
i=1

Q(g, oi). (4)

Let ν(n) = infg∈G J (n)(g), the algorithmic solution of order
n introduces

An(on, δ) = {g ∈ G : J (n)(g) ≤ ν(n) + δ}, (5)

as the empirical δ-solution set for h, where 0 ≤ δ < ε. We
define

Ψn,P (h, ε, δ) � {ω ∈ Ω : An(On(h, ω), δ) � SP (h, ε)}(6)

as the event that the algorithmic solution of order n with δ-
deficiency misidentifies ε-approximate solutions for h. As-
suming that this event is measurable for every n, we would
like to investigate the behavior of

sup
P∈P

sup
h∈H

P(Ψn,P (h, ε, δ)) (7)

with respect to n. Equation (7) determines the worst case
probability of misidentification whose convergence to zero
means that the algorithm can identify any unknown state with
accuracy ε. For example, in the echo control problem, con-
vergence of (7) implies that the adaptive algorithm will attain
the desired level of accuracy for any underlying echo path
and and any governing probability distribution belonging to
the probabilistic model.

3. CONVERGENCE AND ASYMPTOTIC BEHAVIOR

To prove consistency and convergence in probability, and to
investigate the asymptotic behavior of (7), we first relate (7)
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to the uniform convergence arguments known in the literature
of learning theory [1], [4].

3.1. Uniform Convergence

To study convergence property for the algorithm, let

Φn,P (h, ε) �

{
ω ∈ Ω : sup

g∈G

∣∣∣JP (h, g) − J (n)(g)
∣∣∣ ≥ ε

}
. (8)

We now state and prove the following lemma.

Lemma 3.1. For every 0 ≤ δ < ε, the following inequality
holds true

P(Ψn,P (h, ε, δ)) ≤ P(Φn,P (h, (ε − δ)/2)). (9)

Proof. Let Jo
P (h) = infg∈G JP (h, g). One can verify that

Ψn,P (h, ε, δ) = {ω ∈ Ω : ∃g ∈ G, J (n)(g) ≤ ν(n) + δ,

JP (h, g) > Jo
P (h) + ε}.

Let ε = (ε − δ)/2. We define

∆n(ε) �

{
ω ∈ Ω : Jo

P (h) − ν(n) ≥ −ε
}

and its complement ∆c
n(ε) = Ω\∆n(ε). One can verify that

Ψn,P (h, ε, δ) ⊆ (Ψn,P (h, ε, δ) ∩ ∆n(ε)) ∪ ∆c
n(ε).

Consider the event Ψn,P (h, ε, δ)∩∆n(ε) and let ω be an out-
come belonging to this event. By definition, there exists a
g ∈ G that satisfies the conditions of Ψn,P (h, ε, δ). We can
verify that for this outcome ω, the inequality

JP (h, g) − J (n)(g) ≥ ε − δ + Jo
P (h) − ν(n) ≥

ε − δ

2
holds true. As a result, for every outcome ω ∈ Ψn,P (h, ε, δ)∩
∆n(ε), we have

sup
g∈G

(
JP (h, g) − J (n)(g)

)
≥ ε. (10)

Now consider an outcome ω ∈ ∆c
n(ε) and note that for

this outcome, we have

v(n) − Jo
P (h) > ε.

By continuity of JP (h, g) and compactness of G, there exists
an optimal go ∈ G such that Jo

P (h) = JP (h, go). By defini-
tion, we have J (n)(go) ≥ ν(n). This means for very outcome
ω ∈ ∆c

n(ε), we have J (n)(go) − JP (h, go) > ε that implies

sup
g∈G

(
J (n)(g) − JP (h, g)

)
≥ ε. (11)

By (10) and (11), we can conclude the assertion.

3.2. Relative Uniform Convergence

Since we are interested in unbounded loss functions, we need
to apply some restriction on the set of probability measures
that is assumed in modeling the problem. For this purpose, we
first assume that there exists a dominating function M : O →
R+ such that for every o ∈ O,

sup
g∈G

Q(o, g) ≤ M(o) < ∞. (12)

Now, using a parameter ρ > 0, we index and define the de-
sired collection of probability measures as follows

Pρ =

{
P :

[ ∫
M2dP

]1/2

≤ ρ

}
. (13)

Hence, in the rest of the paper, we assume (13) in definition
(7). Let us define

KP (h, g) �

[ ∫
Q2dP

]1/2

,

and let

Υn,P (h, ε) �

{
ω ∈ Ω : sup

g∈G

∣∣JP (h, g) − J (n)(g)
∣∣

KP (h, g)
> ε/ρ

}
.

The following proposition holds.

Proposition 3.1. For every h ∈ H and P ∈ Pρ,

P(Φn,P (h, (ε − δ)/2)) ≤ P(Υn,P (h, (ε − δ)/2)).

Proof. The proof of this proposition follows by the observa-
tion that KP (h, g) ≤ ρ for all h ∈ H and g ∈ G.

The importance of Proposition (3.1) is that it enables us
to use the results of [1] in studying the convergence rate.

3.3. Exponential Convergence

Let HQ(n) denote the growth function [1, p.190] of the class
of loss functions {Q(·, g)}g∈G for n observations.The follow-
ing theorem provides an upper-bound on (7).

Theorem 3.1. Given δ, ε, and ρ, such that 0 < ε−δ
2ρ ≤ 1, we

have

sup
P∈Pp,ρ

sup
h∈H

P(Ψn,P (h, ε, δ))

≤ 8 exp

{(HQ(2n)

n
−

(ε − δ)2

24ρ2ξ2

)
n

}
, (14)

where 1 ≤ ξ ≤
√

1 − ln ε−δ
2ρ is the solution of

ξ =

√
1 −

ln ε−δ
2ρξ

2
. (15)

Proof. To prove the assertion, we use the results of Lemma
3.1 and Proposition (3.1). By applying the results of [1, Thm.
5.4, p. 200], we conclude that for every h ∈ H and P ∈
Pρ the above inequality holds. Taking the supremum, we
conclude the assertion. To obtain the upper-bound on ξ, we
simply use the inequality ln ξ ≤ ξ−1 and convert the equation
into a quadratic problem.

Theorem 3.1 describes a sufficient condition for uniform
convergence of the identification algorithm. Recalling the
echo control example, Theorem 3.1 describes conditions that
guarantee the convergence of the echo control algorithm within
the desired level of accuracy.
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Equation (14) demonstrates an upper bound on the worst
case probability of misidentification whose convergence to
zero as n grows implies consistent successful learning. Using
(14), we obtain a lower bound on the exponential convergence
rate of (7) as

α(ε, δ, ρ) = lim inf
n→∞

( (ε − δ)2

24ρ2ξ2
−

HQ(2n)

n

)
. (16)

The second term of the right hand side of the equation is de-
pendent on the growth function of the collection of loss func-
tions. Clearly, to have an algorithm that can estimate the state
of the system with any desired level of accuracy, it is sufficient
that the growth function of the collection of loss functions sat-
isfies

lim sup
n→∞

HQ(2n)

n
= 0. (17)

Intuitively, (17) means that to have a consistent learning al-
gorithm, it suffices that as the order of information operator
increases, the uncertainty about the unknown system state de-
creases with a faster rate. The problem of finding the growth
function of a class of loss functions is not an straightforward
problem and usually growth functions are upper bounded by
closed-form expressions using the notion of V C-dimension
and its generalizations [1], [5]. Provided that (17) holds for
the class of loss functions, the convergence rate of the learn-
ing algorithm is specified by

α(ε, δ, ρ) =
(ε − δ)2

24ρ2ξ2
, (18)

where ξ is obtained from (15). Equation (18) simply ex-
presses how the level of accuracy, the algorithmic error, and
certain statistics of the collection of probability measures af-
fect the exponential convergence rate.

4. AFFINE-BASED LOSS FUNCTIONS

While (14) indicates the learning consistency for any class
of cost functions that satisfy (12) and (17), to further explore
some details about the growth function, we introduce a certain
type of loss function that is parameterized by affine combina-
tions of the given class of objects.

Lemma 4.1. Suppose Q = T ◦ R where R : O × G → R is
affine on G, and T : R → R+ is continuous and monotonic.
Then, the growth function of the class of loss functions is up-
per bounded by

HQ(n) ≤ (Nt + 1)

(
ln

n

Nt + 1
+ 1

)
,

where Nt is the dimension of G.
Proof. The proof follows from the results of [1, Ch. 5].

The importance of Lemma 4.1 is that it is applicable to
common loss functions that are used in signal processing. For
example, in system identification the observation space is usu-
ally the pair of input/output of the system, e.g., O = X × Y ,
where X = RNt and Y = R denote the input space and

output space of the system, respectively. Suppose H and
G are the same. In this case, the squared error loss func-
tion is described by Q(x, y, g) = |y − 〈g, x〉|2. To analyze
this example, one can simply define the dominating function
M(x, y) = 2|y|2 + supg∈G 2‖g‖2‖x‖2 and use the results
discussed in Section 3.3.

Using Lemma 4.1, we now determine the sample com-
plexity that is the order of information operator that guaran-
tees a certain level of performance. Let β > 0 be the worst
case probability of misidentification, i.e., (7). Then, the prob-
ability of confidence in the obtained solution is larger than
1 − β. Using the results we have shown so far, we can obtain
the following upper bound on sample complexity

n =
24ρ2ξ2

(ε − δ)2

(
ln

8

β
+ (Nt + 1)

(
ln

2n

Nt + 1
+ 1

))
, (19)

where n > (Nt + 1)/2. Equation (19) is a novel expression
that demonstrates the effect of different parameters in deter-
mining the order of information operator required in approxi-
mating an element of H within the accuracy ε where the algo-
rithmic deficiency is δ and confidence is no smaller than 1−β.
It can be seen that the accuracy ε, the algorithmic error δ, and
the moment constraint of the loss function, ρ, have dramatic
effects in sample complexity. For the echo control problem,
(19) describes how fast the echo control algorithm reduces the
echo into a desired level for exciting signals whose distribu-
tions belong to Pρ.

5. CONCLUSION

In this paper, we introduced a learning model for the prob-
lem of system identification, where the model is based on un-
bounded loss functions and it incorporates algorithmic defi-
ciency. Convergence analysis and conditions for consistency
for the algorithmic solution have been explored. It remains
for future research to further explore the growth function of a
class of unbounded loss functions. Moreover, it is very useful
to investigate how to use such tools from learning theory to
address issues in tracking time-varying systems.
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