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ABSTRACT

In blind source separation and independent component anal-
ysis, it is desirable to select a separation criterion that re-
sults in a simple algorithm and achieves accurate and robust
source estimates. In this paper, we propose to use the Hu-
ber

�
-estimator cost function as the contrast function within

the FastICA algorithm of Hyvärinen and Oja. The algorithm
obtained from this cost is particularly simple to implement.
We establish key properties regarding the local stability of the
algorithm for general non-Gaussian source distributions, and
its separating capabilities are shown through analysis to be
largely insensitive to the cost function’s threshold parameter.
Simulations comparing the performance of this algorithm to
standard FastICA implementations are given.

1. INTRODUCTION

In blind source separation (BSS), one possesses a set of mea-
sured signal vectors

� � � � � � � � � � � 	 � � � (1)

where � is an unknown � 
 � 
 � mixing matrix, � � � � �� 
 � � � � � � � 
 � � � � � � is a vector-valued signal of sources, and	 � � � contains jointly Gaussian noise. In most treatments of
the BSS task, the � 
 � � � � � are assumed to be statistically-
independent, and � is full rank. The goal is to obtain a sepa-
rating transform � such that

� � � � � � � � � � (2)

contains estimates of the source signals. In independent com-
ponent analysis (ICA), the linear model in (1) may not hold,
yet the goal is to produce signal features in � � � � that are as
independent as possible. Numerous ICA and BSS algorithms
have been developed [1]–[4]. Among these methods, the Fas-
tICA procedure in [4] has fast convergence, global conver-
gence for kurtosis-based contrasts in the noise-free case, and
no step size parameter.

In blind source separation algorithms, the choice of cost
function or algorithm nonlinearities determine each proce-
dure’s average separation capabilities. For example, max-
imum likelihood natural gradient-based approaches fail if a

stability condition on the algorithmnonlinearities and the source
distributions is not satisfied [3]. Moreover, no fixed cost func-
tion within such algorithmswill separate arbitrary source mix-
ture types [5]. It has been shown, however, that the family of
three-level quantizer nonlinearities

� � � � � � � � � � � � � �
sgn � � � � � � � � �  (3)

are universal, such that there always exists a value of � �
de-

pending on the ! th output signal distribution for which the
ML-based gradient algorithm is locally-stable at a separating
solution [5].

In this paper, we explore the design of single-unit con-
trast functions for the FastICA algorithm. While the FastICA
algorithm is known to be globally-convergent for a kurtosis-
based contrast, other contrast choices provide local conver-
gence only if they satisfy a certain stability condition with
respect to the output signal distributions. While several cost
function choices appear to work for different source types, we
are unaware of any theoretical results concerning the local sta-
bility of such cost functions for arbitrary source distributions.
We propose the use of the Huber

�
-estimator cost function

from robust statistics [6] as a FastICA algorithm contrast. A
simple version of the FastICA algorithm involving only mul-
tiplies, adds, and threshold operations is obtained from this
cost. Moreover, analysis and simulation show that the algo-
rithm’s separation behavior is largely independent of the cost
function’s threshold parameter for many source distributions,
making it a robust choice for unknown source p.d.f.’s. Simu-
lations comparing the performance of the FastICA algorithm
with two common cost function choices show the efficacy of
the approach.

2. THE HUBER M-ESTIMATOR COST FUNCTION

In his work on robust estimation and statistics [6], Huber
specified the

�
-estimate "# $ for a the location parameter of a

set of scalar measurements # � � � , % & � & ' , as a solution to
the following problem:

" # $ � ( ) * + , -./
$0

1 2 � 3 � # � � � 4 "# � (4)
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Fig. 1: The functions � � � � , � � � � , and � � � � �
for Huber’s

�
-estimator cost function.

where � � � � is a scalar cost function whose overall shape con-
trols the robustness and accuracy of the estimate �� � given im-
precise knowledge about the characteristics of � � � � . Of par-
ticular interest is distributional robustness, in which the p.d.f.
of � � � � is unknown or deviates significantly from an assumed
prior. Huber’s work led to the specification of the so-called
Huber

�
-estimator cost function

� � � � 	
���
��


 � 
 �� 
 � 
 � �
� 
 � 
 � � �� 
 � 
 
 � (5)

where � 	 � is a threshold parameter designed to trade off the
parameter estimation quality with the estimate’s robustness
to outliers and lack of prior distributional knowledge. The
cost function in (5) combines the quadratic and absolute value
functions in a convenient fashion. Minimizing (4) with the
choice in (5) results in the implicit equation��

� � � � � � � 
 � � �� � 	 � (6)

� � � � � � � � � �
� � 	 � � 
 � 
 � �� sgn � � � 
 � 
 
 � (7)

Fig. 1 shows the shapes of � � � � , � � � � , and for completeness,
the derivative of � � � � given by
 � � � �
 � 	 � � � � � 	 � � 
 � 
 � �� 
 � 
 
 � (8)

3. USING THE HUBER M-ESTIMATOR COST
WITHIN THE FASTICA ALGORITHM

The single-unit FastICA algorithm for extracting one non-
Gaussian-distributed source from an � -dimensional linear mix-
ture assumes that the source mixtures have been prewhitened
by a linear transformation � where � � � � 	 � � � � � contains
uncorrelated entries, such that the sample covariance of � � � �
is the identity matrix. For the vector � � 	 � � � � � � � � � � � � ,
the FastICA update is�� � 	 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � (9)

� � � � 	 �� �� �� �� �� � � (10)

where � � � � � 	 � �� � � � � is the estimated source at time � and
algorithm iteration 
 and the expectations in (9) are computed
using � -sample averages.

In [4], the algorithm in (9)–(10) is formulated as the solu-
tion to the following optimization problem:

maximize 
 � � � � � � � � � � � � � � � � � � � 
 � (11)

such that � � � �� � � � � 	 � � (12)

where � is a unit-variance Gaussian random variable. The
criterion in (11) is described as the square of a simple esti-
mate of the negentropy based on the scalar function � � � � ,
where � � � � is “practically any non-quadratic function” [4].
The constraints on � � � � depend on the statistics of the source
extracted at the fixed point of the algorithm iteration, and the
stability conditions are given in [4] as

� � � �  � � � � � �  � � � � � � � � � � � � � � � � � � � �  � � � � � �
! � � � � � �  � � � � � � � � � � � � � � 	 � "

(13)

Several cost functions are suggested as possible choices for

� � � � , including � � � � 	 � � � � � # � � � � � � � � for � $ � $�
, � � � � 	 �  ! " � � � � # � � , and the kurtosis-based � � � � 	

� " � $ 
 � 
 % , although no verification of (13) for the first two
choices of � � � � and any well-known non-Gaussian distribu-
tions has been given.

Given the apparent freedom with which one can choose

� � � � within (11)–(12), we consider the Huber
�

-estimator
cost in (5) as a possible choice for specifying the FastICA
algorithm. We are also motivated by the similarity of (7) to (3)
to allow this choice, particularly as


 � � � � # 
 � in (8) does not
vanish nearly everywhere as does


 %  � � � # 
 � . The resulting
FastICA algorithm is particularly simple, as

� � 
 � � � � � � � �
 � & 	 �
�

��
� � � ' � � � 
 � � � � � 
 � � (14)

where ' � ( � 	 � when ( 
 � and is zero otherwise. It also is
robust to data outliers, although this particular property is not
the focus of this paper. Table 1 lists a short MATLAB script
for implementing the multiple-unit version of this algorithm,
in which the QR decomposition is used for signal deflation.

4. ON THE LOCAL STABILITY OF THE HUBER
M-ESTIMATOR COST FOR FASTICA

Given the stability condition in (13), what can be said about
the Huber

�
-estimator cost function when it is used in the

FastICA algorithm? The following two theorems, proven in
the Appendix, illustrate two properties about this cost.

Theorem 1: Let � � � � and � � � � � have the forms in (7) and
(8), respectively. Then, as long as

�  � � � is non-Gaussian-
distributed, there always exists a value of � such that� � �  � � � � � �  � � � � � � � � � � � � � � � � � � � � � � )	 � "

(15)
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Table 1: FastICA algorithm with Huber
�

-estimator cost
----------------------------------------
[N,m] = size(x);
W = eye(m);
v = x/chol((x’*x)/N);
for i=1:iter

y = v*W;
t = (abs(y)<theta);
g = y.*t + theta*sign(y).*(1-t);
dg = sum(t);
[W,R] = qr(v’*g - W*diag(dg));

end
----------------------------------------

Theorem 2: Let � � � � have the form in (5). Then, as long as� � � � � is non-Gaussian-distributed, there always exists a value
of � such that

� � � � � � � � � � 	 
 � � � � � � 	 �� � 

(16)

Taken together, these two theorems do not ensure (13).
They suggest, however, that the design range for � could be
significant for many distributions. We substantiate this claim
through the analysis below and by simulations in the next sec-
tion. These results are also significant because, to our knowl-
edge, few if any statements about the stability of a specific
non-kurtosis-based cost function within FastICA have been
given in the scientific literature. Moreover, it is unlikely that
such results could be easily found given the complexity of the
integrals for other � � � � choices (e.g. � � � � � � � � � � � � � ).

We have evaluated the range of � values for which (13) is
satisfied for four well-known zero-mean, unit-variance, non-
Gaussian distributions: binary- � � � 	 , uniform-

� 
 � �
�

� � � ,
Laplacian, and four-level � 
 � � � 	

�

 � � � 	

� � � � 	
�

� � � 	 	 .
For the first three distributions, the Huber

�
-estimator cost

produces an algorithm that is locally-stable for � in the range� � �
� � � � � , where

� � � � is themaximum possible value of
� � � � �

admitted by the source p.d.f. For the last distribution, the
algorithm is predicted by (13) to be locally-stable for � �� � � � 
 � � � 
 � � � � � 
 	 	 
 � � � 
 � � 
 � , which represents almost 90%
of the range

� � �
� � � � � . In other words, any positive value of

� that places the nonlinear portion of � � � � within the non-
zero portion of the source p.d.f. often results in a locally-
convergent algorithm. Again, this evaluation does not guar-
antee that FastICA with the Huber

�
-estimator cost will al-

ways work, but it suggests that one does not need to design
specific values of � to achieve separation.

In practice, one may not know what � value to choose to
obtain separation of a particular source mixture. A constant �
value creates the possibility of a poor match between the cost
and any one source distribution. For this reason, we suggest
that one randomize the value of � over a range of positive val-
ues during coefficient adaptation. This randomization is not
expected to significantly harm final separation performance
given the linear shape of � � � � over � � � � � ; the main expected
affect is a slight slowdown in convergence speed.
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Fig. 2: � � � 	 vs. number of snapshots �
for the various algorithms in the simulation example.

5. SIMULATIONS

We now explore the performance of the FastICA algorithm
with Huber

�
-estimator cost via simulations. In these sim-

ulations, � � � � -source mixtures were generated consist-
ing of three binary- � � � 	 -, three uniform-

� 
 � �
�

� � � -, two
Laplacian-, and two four-level � 
 � � � 	

�

 � � � 	

� � � � 	
�� � � 	 	 -distributed independent sources and a random mix-

ing matrix. The multi-unit FastICA procedure was applied to
this data for numbers of snapshots ranging from � � � � � to� � 	 � � � and for different � values. The performance factor
computed is the separation cost

� � �
 �
�



��
� � �

��
� � � � � � � � �� � �� � � � � � � � � � �

� � � � � � �� � �� � � � � � � � � � �

�
� 
 � (17)

with � � � 
 � as obtained at convergence of the algo-
rithm. One hundred iterations were averaged to obtain each
data point shown.

Fig. 2 compares the performance of FastICA with the Hu-
ber cost function and � � � and with the Huber cost function
and a uniformly-randomized � in the range � 
 � � � � � at
each iteration with two other versions of FastICA – one us-
ing � � � � � � 
 
 	 � � or � � � � � � � , and another employing

� � � � � � �  � � � � � � � or � � � � � � � � � � � � . As can be seen, the
Huber cost function-based versions perform as well as or bet-
ter than that based on the � � � � � � � nonlinearity and they out-
perform the algorithm based on the kurtosis contrast. More
significantly, our algorithmversion with a randomized thresh-
old parameter � provides good separation performance across
all sample sizes; performance deviations were less than � � dB
from the algorithm with a fixed � � � value.

Fig. 3 illustrates the performance sensitivity of the Fas-
tICA algorithm with Huber

�
-estimator cost to the value of

� for these signal mixtures. As can be seen, the algorithm
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Fig. 3: � � � � vs. � for the FastICA algorithm
with Huber

�
-estimator cost in the simulation example.

performs well for values of � satisfying � � � � � � � , and its
performance degrades gracefully for higher � values.

This Huber
�

-estimator cost was recently used to iden-
tify and separate uniformly-distributed sources from mixtures
containing sparse impulsive sources for � � � � and 	 �

� � � �
as well as for � � � � �

and 	 � � � � � in an algo-
rithm that won the Blind Source Separation portion of the
2005 Machine Learning for Signal Processing WorkshopData
Analysis Competition [7]. The robustness of the Huber

�
-

estimator cost was important to obtaining a winning solution.

6. CONCLUSIONS

In many blind source separation and independent component
analysis algorithms, the cost function used to measure signal
independence is a design parameter. In this paper, we have
considered Huber’s single-parameter

�
-estimator cost func-

tion for use within the well-known FastICA algorithm. The
algorithm so obtained is computationally-simple, and the pro-
cedure works well for a wide range of threshold parameters � .
The reasons for the algorithm’s robust behavior is indicated
through statistical analysis.

7. APPENDIX

Proof of Theorem 1: Assume without loss of generality that
 � � 
 � � 

is unit-variance with an even-symmetric p.d.f.,

as the non-symmetric p.d.f. case can be handled through
the symmetrizing transformation � � 
 � � � � � � � � 
 � � � � � 
 � � .
Considering the terms on the left-hand-side of (15) for the
nonlinearities in (7) and (8), we have

� � 
 � � 
 � � � �
� � �

� 

� � � 
 � � 
 � �

� �
� 
 � � 
 � � 
 �

(18)

� � � � � 
 � � � � � �
� �

� � � 
 � � 
 �
(19)

Define
� � � � � � � � 
 � � 
 � � � � � � � � 
 � � . Then, we obtain

� � � � � � �
� �

� � � � �

 � 


� � � � 
 � � 
 �
(20)

For Eq. (15) not to hold,
� � � � � � � for all possible values of

� . Suppose that
� � � � � � � for some constant � . Then,

�� �
� � � � �

� �
� � � � � �


 � 

� � � � 
 � �� 	 � � �

� �
� 
 � � 
 � � 


(21)

� � (22)

which yields the relationship

� � � � �
� �

� 
 � � 
 � � 
 �
(23)

As shown in [5], the only distribution � � 
 � satisfying (23) is
the unit-varianceGaussian distribution, for which it is straight-
forward to show that

� � � � � � � . Thus, the theorem follows.

Proof of Theorem 2: Substituting (5) into the left-hand-side
of (16) and simplifying yields the expression

� � � � 
 � � � � 	 � � � �
� �

� � 
 � � � � � � � 
 � � � 
 � 
 � � � 

(24)


 �
�

� � � (25)

for

 � 
 � � 
 � , where � 
 � 
 � is the unit-variance Gaussian dis-

tribution. For Eq. (16) not to hold,
�

�
� � � � � for all possible

values of � . Suppose that the slightly-more-general condition

�
�

� � � � �
�

� � � � (26)

is true, where �
�
and � � are unknown constants. Then,

�
�

�
� � �

� �
� �

� �
� � 
 � � � � � � 
 � � � 
 � 
 � � � 
 � �

�
(27)

� �
�

�
� � �

� � �
� � �

� �
� � � � 
 � � � 
 � 
 � � � 
 � � �

(28)

For (26) to hold for all � � � , we must have � � 
 � � � 
 � 
 � ,
which results in �

� � � , � �
� � , and finally

�
�

� � � � � . Thus,
the theorem follows.
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