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ABSTRACT

In this paper we propose a new algorithm for identifying mix-
ing (basis) matrix A knowing only sensor (data) matrix X for
linear model X = AS + E, under some weak or relaxed con-
ditions, expressed in terms of sparsity of latent (hidden) com-
ponents represented by the matrix S. We present a simple
and efficient on-line algorithm for such identification and il-
lustrate its performance by estimation of unknown matrix A
and source signals S. The main feature of the proposed algo-
rithm is its adaptivity to changing environment and robustness
in respect to noise and outliers that do not satisfy sparseness
conditions.

1. INTRODUCTION

Sparse Component Analysis (SCA) and Sparse Signals Rep-
resentations (SSR) arise in many scientific problems, espe-
cially, when one wishes to represent signals of interest by us-
ing a small (or sparse) number of basis signals from a much
larger set of signals. Such problems arise also in many appli-
cations including electro-magnetic and biomagnetic inverse
problems (EEG/MEG), feature extraction, filtering, wavelet
denoising, time-frequency representation, neural and speech
coding, spectral estimation, direction of arrival estimation,
failure diagnosis and speed-up processing.

We consider the following linear model :

X = AS + E, (1)

where X ∈ Rm×T is a given data (observation) matrix , A ∈
R

m×n is unknown full column rank mixing (basis) matrix (not
necessary sparse) and and S ∈ Rm×T is also unknown ma-
trix representing sparse sources or hidden components, T is
the number of available samples, m is the number of obser-
vations and n is the number of sources. The objective is to
estimate both the mixing matrix A and sources S. Most of the
existing algorithms for SCA assume that source signals are
very sparse in the sense that for most samples in each time
instant only one source signal is active. Very recently, these
conditions have been considerably relaxed, but developed al-
gorithms are quite sophisticated and complex and not easy to

implement for on-line, close to real time applications [1], [2],
[3]. Most of these algorithms exploit data structure or very
specific clustering of observed data X for sparse representa-
tion. The most challenging problem in the SCA is precise
estimation of mixing matrix. In this paper, we present a new
adaptive on-line algorithm for such clustering, which is ro-
bust to outliers. Computer simulation examples are presented
showing the validity and robustness of our algorithm. We use
two stage procedures. In first step we estimate the mixing
matrix then in second stage we estimate source signals using
pseudoinverse for m > n, and FOCUSS algorithm or the al-
gorithm in [4] for m < n .

2. IDENTIFICATION OF MIXING MATRIX

Estimation of source signals by SCA requires two steps. The
first step is the estimation of mixing matrix A, and the second
step is recovering original source signals.

If a column of the matrix S has more than (n − m + 1)
zero components in most of instants, observed vector lies on
a hyperplane generated from columns of A. Let us consider
at first, an easiest case n = m = 2, and assume that source sig-
nals are sufficiently sparse, then many columns of observed
signals focus on two 1-dimensional subspaces spanned by
each column of A. In the case of n,m > 2, many columns

of observed signals focus on

(
n

m − 1

)
(m − 1)-dimensional

subspaces (hyperplanes) and 1-dimensional subspaces which
are generated by intersections of the subspaces correspond
columns of A. Some methods to obtain hyperplanes are pro-
posed [4], [5]. However they are not on-line algorithms. The
main objective of this paper is to propose adaptive on-line al-
gorithm.

The clustering algorithm to obtain hyperplanes is often
called k-plane clustering which clusters vectors to k hyper-
planes [6]. Let xi and w j be i-th normalized column of X and
normal vector of jth hyperplane respectively. To fit a hyper-
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plane to samples, the hyperplane is modified as follows.

w(k+1)
j = [I − ηxix�i ]w(k)

j (2)

= w(k)
j − η〈w(k)

j , xi〉xi, (3)

where I is the identity matrix and 0 < η ≤ 1 is a learning note
which controls a strength of learning. Symbols 〈·, ·〉 and �
denote an inner product and transpose respectively. If η = 0,
w j is not modified. If η = 1, w j is projected to the orthogonal
complement of the space spanned by x i. Then the w j and xi

are perpendicular. In other words, x i lies on j-th hyperplane.
If 0 < η < 1, w j is modified to be close to x j. For the larger η,
learning speed is higher. η can change with respect to learning
time. In this case, it decreases monotonically with respect to
learning time. Fig. 1 shows a scheme of this algorithm.

However there are

(
n

m − 1

)
hyperplanes lain xi and some

samples may not have zero component in an instant. Thus
we introduce the threshold θ(t) that decide learning area. If
|〈w j, xi〉| ≤ θ(t), j-th hyperplane is learned. We found that the
best results are obtained if θ(t) also decreases monotonically
with respect to learning time.

Here we summarize our new learning algorithm.

Matrix identification algorithm

1. Remove columns from the matrix X that are close to
origin. They are generated from source signal whose
components are all zero.

2. Normalize and whiten the matrix X. Whitening is not
always necessary, but it improves condition number of
A if the problem is ill-conditioned and makes estima-
tion be easy.

3. for j← 1 to

(
n

m − 1

)

(a) Initialize normal vector w j randomly and normal-
ize it to unit vector.
for t = 1, 2, . . . , learning time

i. for i = 1, 2, . . . , T

• If |〈w j, xi〉| ≤ θ(t), update w j

w j ← w j − η(t)〈w j, xi〉xi,
w j ← w j/‖w j‖

(b) Remove samples such that di ≤ θ(t)
4. Obtain normal vectors of hyperplanes spanned by every

(m − 1) vectors which are subset of a set of w j.

5. Cluster normal vectors to n cluster, then they are row
vectors of A up to permutation and scaling.

After all w j are obtained, it is not necessary to remove
samples in step 3-(b). For sequential x i, hyperplanes such
that 〈xi,wi〉 ≤ θ(t) should be learned.

3. RECOVERING ORIGINAL SOURCE MATRIX

In the case of n ≤ m, estimated original source signals Ŝ are
obtained by pseudo inverse matrix of estimated mixing matrix
Â,

Ŝ = Â
†
X = (Â

�
Â)−1 Â

�
X. (4)

If m < n, recovering original source signals is more dif-
ficult. Some methods to recover source signals are proposed.
We use the method proposed in [4]. This method can ve used
in on-line learning.

Theorem 1 (Source recovery [4]). Let H be the set of all
x ∈ Rm such that the linear system As = x has a solution
with at least n − m + k components. If A fulfills A1), then
there exists a subsetH0 ⊃ H with measure zero with respect
toH , such that for every x ∈ H\H0 this system has no other
solution with this property.

From Theorem 1 it follows that the sources are identifiable
generically (or with probability one), i.e. up to a set with
measure zero, if they have level of sparseness grater than or
equal to n −m + 1, and the mixing matrix is known. Below is
the algorithm, based on the observation in Theorem 1.

Source recovery algorithm

1. Identify the set of k-conditional subvectorspacesH pro-
duced by taking the linear hull of every subsets of the
columns of A with m − k elements.

2. for i← 1 to N

(a) Identify the space H ∈ H containing x i, or in
practical situation with presence of noise, identify
the one to which the distance from x i is minimal
and project xi onto H to x̃i.

(b) If H is spanned by columns a i1 , . . . , aim−k of A,
then find coefficients λi, j such that x̃i =

∑m−k
j=1 λi, jai j .

These coefficients are uniquely determined if x̃i

does not belong to the set H0 with measure zero
with respect toH .

(c) Construct solution si; ith column of S: it contains
λi, j in the place i j for j = 1, . . . ,m − k, the other
component are zero.

4. COMPUTER SIMULATION

To validate our algorithm, we show two experimental results.
One is a complete (n = m) and nonstationary matrix A case
and the other is an overcomplete (m < n) and stationary case,
i.e., for fixed matrix A.

V  682



4.1. Complete (n = m = 5) and nonstationary case

In this experiment, we show the ability of pursuit with varia-
tions of A. We made five artificial source signals using randn
command of Matlab, which provides standard normal distri-
bution. Then one element chosen randomly substitute zero
for each column. A is also decided randomly as follows,

A(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5130 0.5841 0.8188 0.5449 0.3984
0.1718 0.5608 0.1926 0.5200 0.4375
0.5325 0.4870 0.4443 0.2074 0.4702
0.6507 0.3224 0.0129 0.5482 0.4380
0.0164 0.0577 0.3080 0.2986 0.4867

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(for t ≤ 500).

Each column of A is normalized to unit length vector. After
500 samples, we modified A11 as A11 + 0.1	t/1000
, where
t is sample number after 500 samples and 	·
 denotes a ceil
function. Then we normalized each column of A.

At first, we estimated a mixing matrix Â using first 500
samples. Then the error between A and Â which is mea-
sured by minP∈P ‖ÂP − A‖2 is 3.13 × 10−3, where P is a set
of permutation matrices, and ‖ · ‖2 is Frobenius norm. We set
maximum number of iterations to 2,000 and while learning,
learning coefficient η(t) and θ(t) are set as follows,

η(t) = 0.5 − (2.5 × 10−4)t
θ(t) = cos(π/4 + (4 × 10−4)t).

Fig. 2 shows the error after 500 samples. The dotted line
shows the error between an initial mixing matrix A ini and
modified A.

4.2. Overcomplete and stationary case

In order to show the performance of this algorithm in the over-
compleate case, we experimented under the condition n = 5,
m = 3. A is decided randomly as follows,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.5525 0.3919 0.5707 0.3934 0.6904
0.6863 −0.6066 0.5166 0.8634 −0.6007
0.4730 0.6917 −0.6383 −0.3158 0.4032

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (5)

We generate 2,000 samples as artificial source signals and
substitute zero to 3 components chosen randomly. Fig. 3
shows the source signals we used. We set learntimes to 2,000
and η(t) and θ(t) are set as follows,

η(t) = 0.1 − (5 × 10−5)t
θ(t) = cos(π/4 + (4 × 10−4)t).

Using our method, we obtained estimated mixing matrix
as follows,

Â =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.3865 0.3935 0.5525 0.3981 0.6907
−0.6082 0.8634 0.6861 0.5431 −0.6004
0.6933 −0.3158 0.4733 −0.7393 0.4031

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (6)

In this case, all columns of the matrix A are recovered almost
perfectly, but only 3rd column is estimated with larger error.
Then the error minP∈P ‖ÂP − A‖2 equals to 0.2018. The re-
covered signals are shown in Fig. 4.

5. DISCUSSION

Many existing algorithms for SCA require some strong con-
ditions to estimate mixing matrix. Especially, they require
the number of zeros in each time instant is sufficiently large,
because they cluster observed signals before finding hyper-
planes. For example, in [4], it is assumed that each column
of S has n − m + 1 zero components, or it is assumed that
each column of S has no more than m/2 nonzero components.
However it is not guaranteed that environmental signals sat-
isfy such conditions.

Our algorithm allows us to identify a mixing matrix when
these conditions are considerably relaxed introducing the learn-
ing threshold θ(t) instead of such assumption. Moreover our
algorithm can ignore samples which have many nonzero com-
ponents if the number of them is relative small in comparison
to “sparse” samples.

The performance of matrix identification is related to many
factors. The condition number of mixing matrix, the num-
ber of samples which have sufficient zero elements, additive
noise and the number of observations are all related with its
performance. If the mixing matrix is ill-posed, i.e., its condi-
tion number is large, hyperplanes are close each other and it
becomes very difficult to detect all hyperplane. If n is large

and m is small, the number of hyperplanes,

(
n

m − 1

)
is very

large and the number of their intersections increases expo-
nentially. Therefore, many samples are needed to obtain all
hyperplane. We also experimented such cases, however our
method is valid at least for n < 10.

From an experiment in section 4.1, our algorithm can pur-
sue slow variations of mixing matrix. The ability of pursuit is
related with variations and learning threshold θ(t). For large
variation, learning threshold should be large, however in the
case that the noise is large or mixing matrix has large condi-
tion number, pursuit will be difficult.

From an experiment in section 4.2, our algorithm is still
useful for overcompleate case. However, as mentioned above,
if n increase, the number of hyperplane and their intersection
increase exponentially and for large or even medium scale
problem SCA is still a big challenge.

6. CONCLUSION

We developed new algorithm for SCA. It is simple and on-line
learning method. The experimental results show its ability of
pursuit and performance under the overcompleate condition.

Optimal parameters or stability of our methods is not still
discussed. It has to be considered in the future.
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