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ABSTRACT

We derive the form of the best non-linear functions for per-
forming independent component analysis (ICA) by maximum
likelihood estimation. We show that both the form of nonlin-
earity and the relative gradient update equations for likelihood
maximization naturally generalize to the complex case, and
that they coincide with the real case. We discuss several spe-
cial cases for the score function as well as adaptive scores.

1. INTRODUCTION

There are a number of approaches for performing independent
component analysis (ICA) of complex-valued sources (see
e.g., [1, 2, 3, 6, 7, 10]), some with specific assumptions on the
source distributions such as their circular/noncircular nature.
Maximum likelihood (ML) provides a desirable framework
for many estimation problems, and in the case of ICA, it pro-
vides guidance for the choice of nonlinear functions to gen-
erate the higher-order statistics. The nonlinearity to achieve
ICA should be chosen as close as possible to the score func-
tion of each source, which is given by ψi = −p′i/pi where pi

is the probability density function of the ith source.
In this paper, using a simple transform from the complex

n-dimensional space to the real 2n-dimensional one, we de-
rive the form of the best nonlinearity for complex-valued ML.
We show that the score function coincides with the score for
the real-valued case and discuss a number of special cases for
the source distribution as well as adaptive scores as in [9].
The derivation we present is straightforward and eliminates
the need to work with complex partial differential operators
as in [8], where the form of the nonlinearity is derived for
mutual information minimization, and, as expected, coincides
with the form we derive. We show that the relative gradient
algorithm naturally generalizes to the complex case as well.

2. COMPLEX PRELIMINARIES AND AN
ORTHOGONAL DECOMPOSITION

A complex random variable X is defined as a random variable
X = Xr+jXi where the real and imaginary parts, Xr and Xi

are real-valued random variables. We consider the case where

the joint probability density function (pdf) pX(x) ≡ p(xr, xi)
exists and is log-differentiable as an R

2 �→ R function.
We consider the traditional linear mixing model, i.e., the

vector of observed random variables x ∈ C
n can be written

as a linear mixture of the sources s ∈ C
n, such that x = As

where A ∈ C
n×n. The ICA problem is then the recovery of

the source estimates y = Bx by optimizing a suitable cost.
We define the following linear invertible mappings from

the complex space to the real one as in [11]:

x ∈ C
n×1 �→ x̄ =

[
xr

xi

]
∈ R

2n×1

A ∈ C
n×n �→ Ā =

[
Ar −Ai

Ai Ar

]
∈ R

2n×2n (1)

and write the linear mixing model as x̄ = Ās. We note that
the group of invertible complex n× n matrices is isomorphic
to the group of invertible matrices obtained through the ·map-
ping. This isomorphism is the key in making our derivations
work out nicely.

Next, we define an orthogonal decomposition of the space
of 2n×2n matrices, which is instrumental in our development
of the maximum likelihood formulation for the complex case.
We write a 2n × 2n matrix M in terms of 4 blocks of size

n × n as M =
[

M11 M12

M21 M22

]
. The linear space of 2n ×

2n matrices can be decomposed into two orthogonal spaces:
R

2n×2n = M+
n ⊕ M−

n where M+ (resp. M−) contains
any matrix such that M11 = M22 and M12 = −M21 (resp.
M11 = −M22 and M12 = M21). Hence a 2n × 2n real
matrix has the orthogonal decomposition M = M+ + M−

where

M+ = 1
2

[
M11 + M22 M12 − M21

M21 − M12 M11 + M22

]
∈ M+.

A similar expression can be written for M−. Note that the
set of invertible matrices of M+ form a group for the usual
multiplication of matrices and we have Ā ∈ M+, which is
defined in (1).

The following are some useful properties of the mapping
· defined in (1) that can easily be verified.
P1: Ax = Āx̄;
P2: AB = ĀB̄ and thus A−1 =

(
Ā

)−1
, and

P3: xyH = 2 (x y)+ where ·H denotes Hermitian transpo-
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sition (transposition plus complex conjugation) and ·+ is de-
fined above.

3. LIKELIHOOD OF COMPLEX MIXTURES

We review the ML formulation for the real case and its max-
imization with relative gradients in Appendix A. For the com-
plex case, we can use the ·mapping and write the log-likelihood
function for T independent samples x̄(t) ∈ R

2n as in the real
case: L(Ā) =

∑T
t=1 �(Ā), where

�(Ā) = log p(x̄(t)|Ā) = log ps̄(Ā−1x̄) − log |det Ā|.

We then let ps̄(s̄) represent the pdf of s̄ and ψ̄ : R
2n → R

2n

the associated score function, i.e., ψ̄(ȳ) = − ∂
∂ȳ log ps̄(ȳ)

where ȳ = Ā−1x̄.
We next find the stationarity condition for the likelihood

and derive the relative gradient algorithm.

Relative variation of the likelihood. If A is changed into
A(In+E), then Ā is changed into A(In + E) = Ā(I2n+E)
by P2. Therefore, we can use the result obtained in the real
case and write

L(Ā(I2n + E)) = L(Ā) + 〈H2(Ā) ,E〉 + O(‖E‖2)

using Ā−1x̄ = A−1x̄ = A−1x = ȳ and defining

H2(Ā) =
T∑

t=1

H2(ȳ(t)) with H2(ȳ) = ψ(ȳ)ȳT − I2n.

Here, 〈· , ·〉 denotes the inner product between real matrices:
〈M ,N〉 = trace(MT N).

However H2(Ā) is not necessarily equal to M for some
matrix M of C

n×n (because it does not have, in general, the
required block structure). But, we have

〈H2(Ā) ,E〉 = 〈H2(Ā)+ ,E〉
because H2(Ā) = H2(Ā)++H2(Ā)− and 〈H2(Ā)− ,E〉 =
0 since H2(Ā)− ∈ M−

n and E ∈ M+
n , which are orthogonal

subspaces. Now, H2(Ā)+ being in M+
n is the image of some

complex n × n matrix. Using the definition of H2 and prop-
erty P3 given in section 2, one easily finds that H2(Ā)+ =
1
2H(A) for

H(A) =
T∑

t=1

ψ(y(t))yH(t) − In, (2)

where the associated score function ψk(·) : C �→ C is given
by

ψk(y) = −1
2

(
∂ log psk

(yr, yi)
∂yr

+ j
∂ log psk

(yr, yi)
∂yi

)
(3)

for the kth source.

We can thus write the final result as:

L(A(I + E)) = L(A) +
1
2
〈H(A) ,E〉 + O(‖E‖2).

Maximum likelihood. Hence, a stationary point of the like-
lihood is characterized by 〈H(A) ,E〉 = 0 for any E in C

n×n

and therefore 〈H(A) ,M〉 = 0 for any M ∈ M+
n which

implies that H(A) can only be zero since this is the only
matrix of M+

n which is orthogonal to all the other elements.
The latter implies that the ML estimate of A is a solution of
H(A) = 0.

Relative gradient algorithm. One can repeat here the same
argument as in the real case: since the first order variation
of the log-likelihood when A is changed into A(In + E)
is 〈H(A) ,E〉, one is guaranteed to increase it by making in
small in the direction of the relative gradient, i.e., by taking
E = µH(A) for a small enough step µ. Of course, this im-
plies E = µH(A). As in the real case, it is again simpler to
update the inverse of A.

Hence the ML solutions have exactly the same structure
as in the real case. The relative gradient algorithm [5] also
generalizes naturally as:

1. Compute H = 1
T

∑
t ψ(y(t))yH(t) − In with y(t) =

Bx(t). If ‖H‖ is small enough, stop.

2. Update B into (In − µH)B and go to step 1.

Each step of this algorithm is guaranteed to increase the like-
lihood of A = B−1 for small enough step size µ.

Note that H can be replaced with the instantaneous values
H(A) = ψ(y(t))yH(t)−In in the updates for stochastic rel-
ative gradient optimization. This stochastic relative gradient
update coincides with the updates used in [1, 4, 2, 10]. In [1],
this is introduced in the context of ICA using nonlinear decor-
relations with a set of complex functions from the trigono-
metric and hyperbolic family, in [4] for performing complex
Infomax, and in [2, 10], using ML/Infomax assuming that the
sources are circular.

As the results for the updates and the score function show,
there is perfect parallelism between the complex and real cases
and the development presented provides a straightforward way
to derive the form of the nonlinearity as well as the form of
the updates.

4. SOME SCORE FUNCTIONS

To recover independent sources through ML, the form of the
score function ψk should be adapted to each individual source
sk. Next we consider a number of cases for the source distri-
bution, discuss the form of corresponding score function, and
define adaptive scores as in [9].
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4.1. Gaussian variables

For a zero mean Gaussian-distributed source, the score func-
tion can be written as

ψg(s) =
sE{|s|2} − s∗E{s2}

2(E{|s|2}2 − |E{s2}|2) . (4)

The Gaussian source is circular, i.e., its pdf is rotation in-
variant, when E{s2} = 0 implying zero correlation between
the real and imaginary parts and equal standard deviations,
i.e., σr = σi ≡ σ. Note that only when the source is cir-
cular, the score function is a linear function of s (given by
ψg(s) = s/4σ2) coinciding with the result for the real case,
i.e., the best nonlinearity for the gaussian random variable is
the linear one. Otherwise, it is linear either in sr or si but not
in s.

The Gaussian score function given in (4) implies that
E{sks∗l } = 0 and E{s∗ks∗l } = 0 for k 	= l, since we have
E{ψg(sk)s∗l } = 0 for k 	= l. Hence, it satisfies the con-
dition for the strong uncorrelating transform defined in [7],
which requires that both the covariance matrix E{ssH} and
the pseudo-covariance matrix E{ssT } to be diagonal for sk

and sl to be strongly uncorrelated. It is shown that this trans-
form can be used to achieve ICA of noncircular sources as
long as they all have distinct spectral coefficients, which are
defined as σ2

r − σ2
i for each source.

4.2. Circular variables

If a given source has a circular distribution, i.e., pc(s) =
g(|s|). Then, it is a simple matter to find that the score func-
tion has the form

ψc(s) =
s

2|s|f(|s|) for f = −g′

g
.

In other words, the score function always has the same phase
as its argument. This is the form of the score function pro-
posed in [2] where all sources are assumed to be circular.

4.3. Adaptive scores

We consider the issue of adapting the non-linear functions to
the sources distributions. From ML theory, it is clear that
for each source, the non-linear function ψ(s) should be as
close as possible to the “true” score function ψo(s) for the
corresponding source.

We extend the elegant method of Pham and Garat [9] to
the complex case. It is based on using a setF of M predefined
functions f1, . . . , fM : R

2 → R
2. Each non-linear function

ψ(s̄) : R
2 → R

2 is taken to be a linear combination: ψ(s̄) =∑M
m=1 αmfm(s̄) = F (s̄)α with F (s̄) = [f1(s̄), . . . , fM (s̄)]

and α = [α1, . . . , αM ]T . For a given source, the coeffi-
cients are chosen to minimize E‖ψo(s̄) − F (s̄)α‖2 where
ψo(s̄) denotes the score function of the true distribution of s̄.

Since this score-matching criterion is quadratic in α, the op-
timal value of α is easily found to be αopt = C−1c where
Clm = E{fl(s̄)T fm(s̄)} and cm = E{fm(s̄)T ψo(s̄)}. Ma-
trix C is easily estimated by replacing the expectation oper-
ator by a sample average. In order to estimate vector c, we
need the true score function ψo(s̄), which is unknown. The
nice observation given in [9] to overcome this problem (as
extended here to the complex case) is to recognize that, for
any well-behaved function f(s̄) = [fr(s), fi(s)]T , we can
use integration by parts to write

E{f(s̄)T ψo(s̄)} = E

{
∂fr(s)
∂sr

+
∂fi(s)
∂si

}
(5)

provided that fr(s)ps(sr, si) vanishes at infinity—and simi-
larly for fi(s)ps(sr, si). Hence, even if ψo(s̄) is unknown,
its correlation with any function (hence vector c) is easily es-
timated as the sample average of derivatives as suggested by
equation (5). In the real case, it is shown that if the setF con-
tains at least the identity function plus some other non-linear
function, then the stability of the separation is guaranteed [9].

Consider the Gaussian score function ψg(s) defined in (4).
Its mapping is

ψg(s) =
1

4(1 − ρ2)

[
sr/σ2

r − ρsi/σrσi

si/σ2
i − ρsr/σrσi

]

i.e., ψg(s) = Fg(s̄) αg for Fg(s̄) =
[

sr 0 si

0 si sr

]
and

αg = 1
4(1−ρ2) [

1
σ2

r
, 1

σ2
i
, −ρ

σiσr
]T where ρ = E{srsi}. That is,

we need M = 3 and the basis functions: f1(s) = Re(s) =
sr, f2(s) = jIm(s) = jsi, and f3(s) = si + jsr = js∗) (or
another equivalent choice) to represent the score function of
a non-circular Gaussian complex variable. Hence, if we take
Fg(s̄) as the basis functions, we do not need to use (5) explic-
itly because the best coefficients are already apparent: they
are the αg defined above and they are optimal for Gaussian
variables since Fg(s̄)αg is the Gaussian score.
Normalization. Note that in the blind separation problem,
the phase of each source cannot be identified. Thus, we can
always add an arbitrary phase to each source in such a way
that ρ = 0. Similarly, a global scale can be imposed on each
source. We choose to normalize the separation by imposing
σ2

r + σ2
i = 2. One can also add an extra π/2 phase shift to

ensure that σ2
r ≥ σ2

i . Then the Gaussian score reduces to
ψg(s) = (sr/σ2

r + jsi/σ2
i )/4.

We have then the following algorithm for non-circular
Gaussian sources: start with y(t) = x(t) and iterate through

1. Normalize each source ym(t) as described above.

2. Compute σ2
r and σ2

i for each source and apply the Gaus-
sian score ψg(s) = (sr/σ2

r + jsi/σ2
i )/4 to it.

3. Compute H as before. Exit if it is small enough. Oth-
erwise, update the sources by y(t) = (In − µH)y(t)
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Since this algorithm computes the ML estimate under a Gaus-
sian model, it does perform strong uncorrelating transform as
discussed earlier. However, SUT algorithm given in [7] per-
forms a second-order direct implementation to achieve inde-
pendence and hence is a much more efficient way to perform
ML in the case of Gaussian sources.

In the case of non-Gaussian sources, it is desirable to in-
clude extra information in addition to second-order statistics.
This is easily done by complementing FG(s̄) with non-linear
functions. The simplest possibility is to include a single ‘cir-
cular score’ of the form fc(s) = g(|s|2)s/|s|2 for some func-
tion g : C → R. Then, taking into account the simplification
introduced by our normalization convention, we would use

the basis F (s̄) =
[

sr 0 g(|s|2)sr/|s|2
0 si g(|s|2)si/|s|2

]
and we would

need to use equation (5) explicitly to obtain the best coeffi-
cients.

Remark: in this simple approach, all the information car-
ried by the non-circularity is exploited by the linear part of the
score i.e., using second-order information and, conversely, the
other-than-second-order information is exploited ‘circularly’
via the circular function g(·). This approach is much simpler
than the two-step algorithm in [8].

A. APPENDIX

Summary of ML estimation in the real case

If s is an n × 1 real random vector with a probability density
ps(s) on R

n and one observes x = As for some n×n matrix
A, then the pdf of x is p(x|A) = ps(A−1x)/|detA|. The
score function associated with a (differentiable) pdf ps is the
function ψ : R

n → R
n defined as ψ(s) = − ∂

∂s log p(s).

Relative variations. Let �(A) denote the log-likelihood of
A, i.e., �(A) = log p(x|A). The first order variations of
�(A) around a given point A are conveniently expressed in
terms of relative variations. A classic derivation yields

�(A(I + E)) = �(A) + 〈H(A−1x) ,E〉 + O(‖E‖2)

where H : R
n → R

n×n is the function H(s) = ψ(s)sT − I.
DenoteL(A) = log p(x(1), . . . , x(T )|A) the log-likelihood

of A in front of T samples x(1), . . . , x(T ). If they are mod-
eled as independent, then L(A) =

∑T
t=1 log p(x(t)|A) and

the (relative) variation of L(A) is

L(A(I + E)) = L(A) + 〈H(A) ,E〉 + O(‖E‖2)

where H(A) =
∑T

t=1 H
(
A−1x(t)

)
.

Maximum likelihood estimate. If A is a maximum of the
likelihood, then it must be stationary at first order against all
variations of A. Therefore, it must verify 〈H(A) ,E〉 = 0 for
all E in R

n×n. This, of course, implies that a stationary point
of the likelihood is characterized by H(A) = 0.

Maximization of the likelihood with the relative gradient.
Let A be a matrix such that H(A) 	= 0. Let us change A to
increase the likelihood. Consider a small step in the (relative)
direction D ∈ R

n×n, i.e., A is replaced by A(I + µD) for
some small step µ. Then the log-likelihood is increased by
〈H(A) , µD〉 + O(µ2). Taking D = H(A) (i.e. moving in
the direction of the relative gradient) and µ a small enough
positive step guarantees a positive increase since
〈H(A) , µH(A)〉 = µ‖H(A)‖2.

Hence the relative gradient for maximizing the likelihood
of A in front of T samples assumed to be independent and
generated by x(t) = As(t) is: while H(A) is not small
enough, change A into A(I + µH(A)).

It is more natural (and cheaper) to implement this idea by
updating the inverse B of A rather than A itself. A small
relative change of A into A(I + E) induces a small change
of B = A−1 into (A(I + E))−1 = (I + E)−1A−1 ≈ (I −
E)B. Hence, we never need to invert A. More explicitly the
algorithm for a given learning step µ starts with some matrix
B and iterates through:

1. Compute y(t) = Bx(t) and H = 1
T

∑
t H(y(t)). If

‖H‖ ≈ 0, stop.

2. Update B into (In − µH)B and go to step 1.
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