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ABSTRACT

Source sparsity based methods have become a common approach to
blind source separation (BSS) problems, especially in the underde-
termined case (more sources than sensors). If the sources are not
sparse in the time-domain, in most cases, they can be mapped to
a transformed domain (e.g., wavelets, time-frequency, Fourier) in
which this assumption is verified. In this paper, we are solely in-
terested in the estimation of the mixing matrix. As observed by
Zibulevski and coauthors, the data represented in the scatter plot of
the observations tend to cluster along the mixing matrix columns.
Each column can be seen as one of the principal components of the
data in a higher (possibly infinite) dimension space, and these com-
ponents can be estimated with a Kernel Principal Component Anal-
ysis (KPCA) based approach. The theoretical framework is derived,
and excellent performance is observed both on synthetic and audio
signals.

1. INTRODUCTION

Blind Source Separation (BSS) consists in estimating n signals (the
sources) from the sole observation of m mixtures of them (the ob-
servations). In this paper we consider linear instantaneous mixtures,
such that

xt = Ast (1)

where xt = [x1,t, . . . , xm,t]
T is the vector containing the obser-

vations at time t = 1, . . . , N , st = [s1,t, . . . , sn,t]
T is the vector

containing the sources, A is the m × n mixing matrix.
A now common approach to source separation consists of using

source sparsity assumptions, in particular for underdetermined mix-
tures (m < n). This approach has been thoroughly developed in
several papers from Zibulevsky and coauthors (see e.g. [1, 2]), with
preliminary ideas found in [3]. The assumption of sparsity means
that only a few coefficients of the sources are significantly non-zero.
If the sources are not sparse in their original domain (e.g., the time
domain for audio signals), they might be sparse in a transformed
domain (e.g., the Fourier domain, wavelet transform).

Source separation methods exploiting source sparsity fall into
two categories. One category consists of methods estimating jointly
the mixing matrix and the sources under appropriate models, and
usually within a Bayesian framework (see [4] and references therein).
The second category consists of two steps methods: first estimate the

Frédéric Desobry acknowledges support from the Boeing company un-
der the University of Cambridge grant RG40562. Cédric Févotte acknowl-
edges support from the European Commission funded Research Training
Network HASSIP (HPRN-CT-2002-00285).

Fig. 1. (a) Scatter plot of x1 w.r.t x2 in the time-domain. (b) Scatter
plot of x1 w.r.t x2 in the MDCT domain - the dashed lines represent
the directions of the mixing matrix.

mixing matrix, then infer the sources from the observations and the
estimated mixing matrix. If the mixture is determined, the second
step simply consists of applying the inverse of the mixing matrix es-
timate to the observations. If the mixture is underdetermined, the
sources can be either estimated from heuristic approaches (based on
projection of the observations onto the closest mixing matrix column
[3,5–7]) or from Bayesian approaches using a Laplacian source prior
(which boils down to shortest path decomposition using linear pro-
gramming [1, 2]), a mixture prior (a weighted sum of a Dirac at 0
and another distribution) [5, 8], or a Student t prior [4].

In this paper we are solely interested in the estimation of the
mixing matrix. The interest of this task is twosome: 1) it corre-
sponds to the first step of the methods in the second category, 2) it
can provide a good initialization point of the mixing matrix and thus
accelerate the convergence of the methods of the first category.
Because of the sparsity of the sources, the observations tend to clus-
ter along the mixing matrix columns. This is illustrated on Fig. 1.
The left plot shows a scatter plot of the two observations of a 2 × 4
mixture of four audio sources in the time domain. The right plot
shows the scatter plot of the observations after a Modified Discrete
Cosine Transform (a projection on a family of local cosines) was ap-
plied to them. The latter plot clearly shows three clusters, colinear
to the mixing matrix columns.

Thus, estimating the mixing matrix in a mixture of sparse sources
amounts to identify linear clusters passing through the origin (if
the sources are zero-mean) and then merely defined by their an-
gle to the origin. When the sources are sparse the distribution of
θt = tan−1(x2,t/x1,t) is thus n-modal, and many papers have ad-
dressed our task as a problem of estimating the modes of this dis-
tribution from a finite set of values. This is the approach adopted
by Vielva, Erdoğmuş, Príncipe and co-authors in [7–11]. More pre-
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cisely in [8, 9] the authors use a Parzen kernel based estimation of
the density and gradient-based search of its modes, which is similar
to the approach of Bofill and Zibulevsky described in [2] where the
authors search the modes of a potential function of θt. A technique
inspired from spectral analysis is described in [10]. The latter papers
consider the m = 2 case, generalizations to m > 2 are studied in
[7, 11].

Other works addressing the estimation of A include the simple
nearest neighbors classification method mentioned in [12], a method
inspired from image processing techniques for edge detection in [3],
and finally a method based on self organizing maps in [6].

Our approach is based on nonlinear Principal Component Anal-
ysis: the lines in the scatter plot are principal components of the
data, and the estimates of the mixing columns are the first n com-
ponents. We derive an original extension of Kernel Principal Com-
ponent Analysis in reproducing kernel Krein spaces. The remainder
of this article is organized as follows: in Section 2.1, we recall ba-
sics about reproducing kernel Krein spaces, then in Section 2.2 we
present the chosen nonlinear Principal Component Analysis method,
namely Kernel Principal Component Analysis (KPCA). In Section 2.3,
we describe our choice of a (reproducing) kernel. Simulation results
are presented for both synthetic and audio sources in Section 3.

2. KERNEL PCA FOR MIXING MATRIX ESTIMATION

In the following we assume that the sources s1, . . . , sn in Eq. (1) are,
to some extent, sparse. If the sources in their original domain (time,
image) are not sparse per se, we assume that a linear transform yield-
ing a sparse representation of sources (short-time Fourier, local co-
sine transforms, wavelets) was applied a priori to the observations.
For the sake of clarity, we present our approach for m = 2, though
it remains valid for any m. The algorithm for the use of KPCA for
possibly underdetermined matrix identification is presented in Algo-
rithm 1.

Algorithm 1: KPCA for mixing matrix estimation.

Step 0: Initialization

• Set η, θ0 (m, N and n are known);

• Define reproducing kernel k(·, ·) as in Eq. (6);

• Define xt = [x1,t x2,t]
T ; perform shrinkage with threshold

η on the ‖xt‖X ’s; map (by symmetry) all remaining xt’s to
the positive half-plane.

Step 1: Krein kernel principal component analysis

• Define matrix K = [ktt′ ]t,t′=1,...,N as in eq (4);

• Find the eigenvalues and eigenvectors for K.

Step 2: Estimation of the mixing matrix A

• Keep the eigenvectors corresponding to the n largest eigen-
values;

• Express the corresponding n directions in X using Eq. (5).

2.1. Reproducing kernel Krein spaces
Reproducing kernel Hilbert spaces (RKHS) now are a common tool
in Signal Processing and Machine Learning, and their framework
has given birth to a whole family of algorithms, known as kernel
methods [13]. However, in many applications (such as ours, see Sec-
tion 2.3), the required positive definiteness of the reproducing kernel
(rk) is too restrictive, and this constraint cannot be met. It is however
possible to define more general reproducing kernel spaces, such as
reproducing kernel Krein spaces (RKKS) (see, e.g., [14, 15]).

A Krein space1 (K, 〈·, ·〉K) is a vector space which can be de-
composed as the sum of a Hilbert space (H+, 〈·, ·〉H+) and a Hilbert
antispace (H−,−〈·, ·〉H−), with the inner product in K defined as
〈·, ·〉K = 〈·, ·〉H+ −〈·, ·〉H− . As in the more popular Hilbert frame-
work, an RKKS is a Krein space in which the evaluation functional

δx : H → R

f �→ f(x)
for x ∈ X (2)

is continuous; its rk being expressed, e.g., as: k(·, ·) = k+(·, ·) −
k−(·, ·), with k+ (resp., k−) the reproducing kernel in H+ (resp.,
H−). The following proposition in [14] gives a condition for a kernel
to be a Krein rk:

Proposition 1: Condition for Krein reproducing kernel, from [14].
If k(·, ·) is a symmetric function with values in R, the following
assertions are equivalent: (i) k(·, ·) is the reproducing kernel of a
Krein space K of functions on X ; (ii) There exists a positive definite
l : X × X → R+ such that l dominates k (i.e., l − k is positive
definite).

Calculations in RKKSs are very similar to what is commonly done
in a RKHS, as the reproducing property holds:

∀f ∈ H, ∀x ∈ X , 〈f(·), k(x, ·)〉H = f(x) (3)

This implies that functions in K can be expressed as linear combi-
nations of kernels. Basically, the main difference between Krein and
Hilbert RKSs lies in the existence of zero-norm non-zero functions,
which makes the definition of projections more complex. This also
alters the use of norm of differences of functions and the search of
quadratic forms optima. We refer to [17] for deeper insight on these
issues.

2.2. Kernel principal component analysis
Kernel PCA is a functional generalization of Principal Component
Analysis (PCA), as are Isomap, Locally Linear Embedding or spec-
tral clustering methods. It allows for as many principal components
as there are data samples in the training set, and these directions can
be nonlinear.

The rationale of our approach is to consider that the straight lines
we need to recover from the n-dimension space (see Fig. 1) are prin-
cipal components of the data. Though they are linear, PCA cannot
be used as:

1. The directions we are looking for are not orthogonal;

2. There are more directions to find than the dimension of the
space (underdetermined context).

Kernel PCA was initially defined in RKHSs (see, e.g., [13]), but the
same framework applies to any reproducing kernel space, provided
it is endowed with a representer theorem.

We refer to Algorithm 1 for a precise description of our algo-
rithm involving KPCA in an underdetermined context. Basically,

1For further details on (resp. reproducing) Krein spaces, we refer to [16]
(resp., [14, pp. 234-254] and [15]).
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Fig. 2. Reproducing kernel k(·, ·) (see Eq. (6)) plotted as a function
of x̂t,xt′ (left); eigenvalues for k(·, ·) (right).

for a given (reproducing) kernel k : X × X → R and data set
{xt}t=1,...,N , one performs the eigendecomposition of the kernel
matrix defined as:

K = [ktt′ ]t,t′=1,...,N with: ktt′ = k(xt,xt′) (4)

(Recall that in PCA, this task is performed over the correlation ma-
trix E[xxT ]). The directions corresponding to the n largest eigen-
values are estimates of the lines in the scatter data.

We still need to assure that the eigenvectors of K can be recov-
ered, i.e. that they can be expressed as a finite linear combination of
kernels evaluated on the training data. This is obtained through the
representer theorem in [18] which extends Wahba and Kimeldorf’s
to Krein reproducing spaces, therefore allows one to express these
eigenvectors as:

vi(x) =

NX
t=1

αi
tk(x,xt) (5)

with {αi
1, . . . , α

i
N} in R

N , for any x in R
2, and vi the eigenvector

corresponding to the ith largest eigenvalue. Eq. (5) also proves that
KPCA yields linear directions iff the kernel k(·, ·) itself is linear.

Next paragraph is dedicated to presenting the kernel used in Al-
gorithm 1.

2.3. Kernel definition
The kernel used in KPCA needs to be:

• linear, as we are looking for lines in R
m;

• parameterized so that KPCA can be tuned according to the
problem difficulty (sparsity of the sources?, noisy data?);

• designed in the Krein framework (the obvious linear kernel
〈·, ·〉X which is a Hilbert rk cannot be parameterized in terms
of angles).

Denoting (x̂t,xt′) the angle between xt and xt′ , the kernel

kθ0(xt,xt′) =

(
cos(x̂t,xt′ )−cos θ0

1−cos θ0
if (x̂t,xt′) ≤ θ0

0 else.
(6)

satisfies all the required conditions (we recall that if k(·, ·) is a RKKS

kernel, then so is (x,x′) �→ k(x,x′)√
k(x,x)k(x′,x′)

, and that cos(x̂t,xt′) =

〈xt,xt′〉X as the xt’s have unit norm). This kernel is plotted in
Fig. 2, along with its eigenvalues.

3. RESULTS AND DISCUSSION

3.1. Synthetic sources
We first consider synthetic sources generated as:

si,t
i.i.d.∼ pδ0 + (1 − p)N (0, 1) (7)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

Fig. 3. Mean square error between the angles estimated by the
three ICA approaches and θ, as a function of the sparsity index p,
for KPCA- (line), density- (dotted) and clustering-based (dash) ap-
proaches. The approach introduced in this paper exhibits superior
performance, and the error rate keeps low even when p reaches high
values.

(for i = 1, . . . , n, t = 1, . . . , N ). We consider a mixture of n = 4
sources with m = 2 observations, with mixing matrix A defined as

A =

»
cos(θ1) cos(θ2) cos(θ3) cos(θ4)
sin(θ1) sin(θ2) sin(θ3) sin(θ4)

–
(8)

with θ = [θ1 θ2 θ3 θ4]
T = [−60o − 30o 30o 60o]T . We use

N = 1000 samples and study the performance of various methods
upon several values of p, varying from 0.1 to 0.8 (by increments
of 0.05). In the following, we give Monte Carlo estimates of the
mean square error (MSE) 1

n

Pn
i=1(θi − bθi)

2 of the angles θ over
100 realizations of the sources for each value of p.

We compare the behavior of our KPCA-based approach to two
state-of-the-art methods: the clustering approach (C) in [2] and the
density estimation approach (DE) found in [8, 9]. The various pa-
rameters are chosen as follows. In the (KPCA) method, the parame-
ters are the kernel shrinking parameter θ0 = .01◦ and the threshold
η = 0 (no shrinkage). Clustering (C) is performed via the kmeans
algorithm. As in [8, 9], the density estimator is a Parzen estimator
used with a Gaussian window with optimized width. The modes of
the density are found by gradient-based optimization initialized with
the n modes of the angles histogram.

Results are presented in Fig. 3 where the MSEs are plotted vs the
sparsity index p. For p ≤ 0.6, both our approach and (DE) exhibit
excellent behavior, as virtually no error is made in the estimation of
the angles vector θ. For values of p greater than 0.6, this remains
correct only for our approach, as the MSE for (DE) starts increasing
rapidly. The clustering approach presents an overall stable behavior
with approximately a MSE of 5.

3.2. Audio signals
We now apply the above approaches to a mixture of n = 4 audio
sources with m = 2 observations, with mixing matrix A defined
as in Eq. (8) with: θ = [−60o − 55o 30o 60o]. White Gaussian
noise is added to the mixtures, yielding approximately 13dB SNR
on each observation. As in [4], we first preprocess the audio signals
by applying a Modified Discrete Cosine Transform (MDCT) to the
observations. The MDCT is a projection on a family of local cosines
and is known to provide sparse decomposition of audio signals (see,
e.g., [19]). The scatter plot of the noise-free observations is repre-
sented in Fig. 1.
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Approaches KPCA C DE

Noise-free signals 15 / 60
Signals with noise 23 / 66

Table 1. Mean square error between the angles estimated by ker-
nel principal component analysis, clustering, and density estimation
techniques.

We compare again the results obtained by (KPCA), (C) and (DE)
on both the noise-free and noisy observations. For our approach,
parameters are tuned as follows: (noise-free signals) η = 0.4 and
θ0 = 15; (noisy signals) η = 0.5 and θ0 = 1.5.

The results are presented in Table 1. Our approach is more ro-
bust to the addition of noise that (DE), and yields better performance
both on noisy and noise-free signals. The clustering approach does
not converge in both situations.

3.3. Extension to m > 2
The extension to the more general case m > 2 is straightforward as
the framework defined in Section 2 remains the same: what changes
is not the dimension of the matrix K, which is N × N , but the
domain over which the rk k(·, ·) is defined. As the relation between
the inner product and the angle is valid whatever the dimension of
the space, no modification is even required in the definition of the
kernel. Preliminary experiments involving m varying from 2 to 5
are not presented here for the sake of brevity but yielded excellent
performance.

4. CONCLUSION

In this paper, we introduced an original approach for dealing with
the estimation of possibly underdetermined mixing matrices in the
source sparsity based framework proposed by Zibulevsky and coau-
thors. In the space spanned by {x1, . . . ,xm}, we identify the coef-
ficients of the mixing matrix A as the principal components in the
scatter plot of the data using Kernel Principal Component Analy-
sis (KPCA). The need for a theoretical framework and the restric-
tive constraints inherent to the Hilbert context led us to introduce
KPCA in a reproducing kernel Krein space. Experiments on syn-
thetic sources as well as audio illustrate the excellent behavior of our
approach. Further work will involve the estimation of the number of
sources n.
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[9] D. Erdoğmuş, L. Vielva, and J. C. Príncipe, “Nonparametric
estimation and tracking of the mixing matrix for underdeter-
mined blind source separation,” in Proceedings of 3rd Inter-
national Conference on independent component analysis and
blind signal separation (ICA’01), San Diego, California, Dec.
2001, pp. 675–679.

[10] L. Vielva, I. Santamaría, C. Pantaleón, J. Ibánez, D. Erdoğmuş,
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