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ABSTRACT

A new algorithm for blind signal separation of speech 
signals that does not require pre-whitening is proposed in 
this paper. The algorithm is based on second order 
optimization using Riemannian geometry. The algorithm 
employs several practical approximations to the Hessian 
matrix of the maximum-likelihood blind separation cost 
function, to produce a computationally efficient algorithm 
that is capable of working on-line. Simulation results show 
the improved performance of the proposed algorithm with 
different mixing data.  

1. INTRODUCTION 

Blind Source Separation (BSS) is intended to separate or 
recover a set of unobservable sources from another set of 
mixtures, without having access to the mixing matrix 
coefficients. The main category of cost functions for blind 
separation of instantaneous mixtures is information theory 
based methods [1]. This category is preferred due to its 
robustness against outliers, meaning that a single or a few 
highly erroneous observations should have little impact on 
the overall estimate of the sources. Information theory 
approaches aim at separating the mixtures into their basic 
components using estimates of the sources probability 
densities. One of the main cost functions in the information 
theory category is the Maximum-Likelihood (ML) cost 
function.  

In [2], the idea of applying differential geometry to the 
LMS-update of the maximum-likelihood cost function for 
blind separation lead to the well-known natural gradient 
update that exhibits equivariant properties, meaning that the 
gradient is better directed to the minima of the cost function 
on the curved optimization manifold, i.e. Riemannian 
manifold. Not only does the natural gradient provide a 
better convergence behavior, it is also simpler than the 
original LMS-update as it does not require matrix inversion. 
The algorithm proposed in this paper builds upon the 
natural gradient in an attempt to provide an improved on-
line algorithm with faster convergence and a low additional 
computational load.  

The rest of this paper is organized as follows. In section 
2, the principle of signal separation based on maximum-
likelihood is presented, along with a review of the natural 
gradient. Section 3 presents the improved on-line algorithm. 
Section 4 is dedicated to the test setup and the presentation 
of the results. We finally conclude the paper in Section 5. 

2. MAXIMUM-LIKELIHOOD ALGORITHMS 

Let Ninsi 1),(  be the scalar inputs for mixing 
matrix A  at a time n . For simplicity, it is assumed that the 
mixing is linear and that the mixing matrix A is square, i.e. 
of size NN . The mixing model can be expressed as: 

)()( nn sAx     (1) 
The purpose of blind signal separation algorithms is to 

estimate a matrix W  such that PAW , where P  is a 
permutation of the identity matrix I . If this condition is met 
then the outputs of the separation process referred to as 

Ninyi 1),(  are equal to the independent sources 
Ninsi 1),( , except for order and scale ambiguity. 

Maximum-likelihood attempts to perform the separation 
via maximizing the joint entropy );( WyH . The concept has 
been introduced in [3]. The cost function of the log-
likelihood )(WL  of the W  can be expressed as: 
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where {.}E refers to the expected value, iy  is the ith

output and (.)ip  is the probability density function of iy .
The gradient of )(WL  on the Euclidean space is: 
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The natural gradient )(~ WL  can be computed by 
modifying the Euclidean gradient, post-multiplying it by 

WWT to yield: 
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WyygW TEIL )()(~    (5)
A stochastic form of this algorithm can also be 

developed. This is achieved by replacing the expectation by 
the instantaneous value and in each step of the algorithm a 
small step size 1  is used to add the update to the 
demixing matrix W :

WyygWW TI )(     (6) 
The natural gradient update can also be obtained directly 

by finding the steepest descent direction of the cost function 
)(WL on the Lie-algebra space associated with W [4]. The 

modified differential along this tangent space is [5]: 
1WWX dd      (7) 

such that: 
yXyWWxWy dddd 1    (8) 

Differentiation of the cost function )(WL  with respect to 
Xd results in two terms: 
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estimated as follows: 
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The update along the Lie-algebra is given by: 
))(( TgI yyX     (11) 

This update is mapped to the Riemannian space of W  via 
exponential mapping [6]: 

WXW )exp(     (12) 
At the steady state point, i.e. when separation is reached, the 
output signals y  are independent and as such: 

1. The output signals y  are uncorrelated, meaning: 
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2. They are uncorrelated in the more general sense: 
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This means that at separation the gradient along the 
tangent space given by equation (11) reduces to a diagonal 

matrix. This diagonal matrix would have a mere effect of 
scaling the outputs y  without affecting the separation.  

Using the natural gradient as the starting point, we 
propose an algorithm based on the second order 
differentiation along the Lie-algebra space. The algorithm 
proposed in the following section preserves the stability of 
the separation by ensuring that the update at the optimal 
separation point stays diagonal. The proposed algorithm is 
capable of producing improved acceleration of separation 
with a low computational cost. 

3. DIAGONAL HESSIAN ALGORITHM 

3.1. Second Order Differentiation 

The second order differentiation of the cost function )(WL

of the matrix W  of size NN , denoted by )(2 WL  is of 

size 22 NN . )(2 WL  results from the differentiation 
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X  and the first derivative row-by-row into vectors of size 
12N . The differentiation is composed of two terms: 

1. The first results from the application of a 
differentiation operator on the nonlinearity )(yg :
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X
. The differentiation of this term, 

called Hessian1, results in a block diagonal matrix of 
size 22 NN  with blocks along the diagonal of size 

NN  of the from: 
yy1Hessian NiygE T
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2.     The second term of the differentiation results from 
applying the differentiation operator on the output y .
This term is called Hessian2 and is also of size 

22 NN .
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The second order differentiation, i.e. Hessian matrix is 
given by: 

2Hessian1HessianW)(2 L     (17) 
The second order update can thus be of the following form: 
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Where vec(.) is an operation transforming a matrix of size 

NN  to a vector of size 12N .
Equation (18) requires the inversion of the Hessian matrix 
to calculate the update. However, the Hessian matrix 

)(2 WL  is of size 22 NN and thus its inversion would be 
computationally expensive. It would be advantageous to 
apply some realistic approximations so that the inversion of 
the Hessian matrix becomes easier to compute.  

3.2. The Diagonal Hessian Algorithm 

In order to approximate the Hessian matrix with a 
simpler structure,  the conditions of separation presented in 
equations (13) and (14) are revisited. Equation (15), which 
describes the block diagonal matrices of the first term of the 
Hessian matrix, Hessian1, can thus be approximated by 
applying equation (13). The approximated Hessian1 is 
given the name H1Diag and can be written as: 
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As the name indicates, it is clear that the approximation in 
equation (13) reduces the block diagonal matrices 

Nii 1,1Hessian  to mere diagonal matrices. The second 
term Hessian2, given by equation (16), can also be 
approximated by applying equation (14) and taking into 
account that at the separation: 

0

0

ii y

X
y     (20) 

Equation (20) and equation (14) help to reduce the second 
term of the Hessian matrix, Hessian2, to a very sparse 
diagonal matrix, named H2Diag, given by the equation: 
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The two approximations in equations (19) and (21) are 
crucial. They help to approximate the Hessian matrix 

)(2 WL  by a diagonal matrix of size 22 NN , which is 
given the name HDiag:

H2DiagH1DiagHDiag    (22) 
This is especially valuable in calculating the inverse of the 
Hessian matrix. The inversion process will thus reduce to 
obtaining the reciprocal of the diagonal elements: 
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A further simplification in the update can be achieved by re-
arranging the diagonal 22 NN HDiag -1 into an NN
matrix H  via column stacking. This will eliminate the need 
to vectorize the first gradient ))(( TgEI yy . The update 
along the Lie algebra is given by: 

yyHX }))({( TgEI    (24) 
where the operation " " denotes element by element 
multiplication. The update X  can be calculated on-line 
from sample t-1 to sample t by replacing the term 

))(( TgEI yy  by its instantaneous value 

))())((( TttgI yy  and applying a moving window, that we 
chose to be exponential, to replace the statistical expectation 
of the HDiag matrix by the following: 

HDiagHDiagHDiag ousinstantane)1()( tt   (25) 
where the forgetting factor  is chosen close to 1.
The update along the Riemannian space of the matrix 
W can be estimated via exponential mapping of X , and it 
can be implemented on-line as: 

)26()1())())((()()1(

)1())(exp()(

tttItt

ttt
T WyygHW

WXW

The reduction in complexity of the Diagonal Hessian 
algorithm compared to using the direct form of the Hessian 
is clear. The most computationally demanding operation, 
namely the inversion of the 22 NN  Hessian matrix, is 
reduced to scalar divisions and element-by-element 
multiplications as indicated by equations (23),(24). The 
additional complexity of the Diagonal Hessian algorithm 
will thus be in the order of 2N additional operations, which 
is fairly low. 

4. PERFORMANCE OF THE PROPOSED 
ALGORITHM

In order to assess the improvement produced by the 
proposed algorithm given by equation (26), it is compared 
to the natural gradient algorithm, given by equation (6). The 
step size of the natural gradient algorithm is set to 0.0005, 
while the step size of the Diagonal Hessian algorithm is set 
to 0.25. The forgetting factor of the Diagonal Hessian 
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algorithm is set to change from 0.994 at sample t=0 to 0.999 
at t=25000. The nonlinear function )tanh()( yyg .
 The test was performed on audio data files from [7]. These 
files are sampled at 8 kHz and are of duration 6.5 sec each, 
in the following two groups: 
(a) Miscellaneous_4: two males, one female, and soft 
music. 
(b) Male_4: 4 male speakers with similar characteristics. 
We use the following performance index [8], [9]: 
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where WAP  is a permutation matrix. The tests are 
performed for 100 different runs. The matrix A  is 
randomly generated for each run. The following two figures 
illustrate the results of the simulations. 

 Fig.1. The average of 100 randomly generated runs for the 
first group of sources (Miscellaneous_4)  

Fig.2. The average of 100 randomly generated runs for the 
second group of sources (Male_4) 

The simulation results indicate that the proposed algorithm 
can actually provide an improved convergence speed and a 
slightly lower steady state error of separation. This 
improved performance is produced with a low additional 
complexity over the natural gradient. 

5. CONCLUSION

This paper introduced an improved on-line algorithm for 
blind signal separation using the maximum-likelihood 
principle. The algorithm implements an approximation of 
the Hessian matrix on the Riemannian manifold and is 
capable of working on-line and to separate audio mixtures 
with good results, as confirmed by the assessment quality 
measure in different mixing situations. The algorithm 
produces an accelerated performance over the existing 
natural gradient algorithm with only a low additional 
computational load. 
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