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ABSTRACT

We demonstrate that blind separation of more sources than sensors
can be performed based solely on the second order statistics of the
observed mixtures. This a generalization of well-known robust al-
gorithms that are suited for equal number of sources and sensors. It
is assumed that the sources are non-stationary and sparsely distrib-
uted in the time-frequency plane. The mixture model is convolutive,
i.e. acoustic setups such as the cocktail party problem are contained.
The limits of identifiability are determined in the framework of the
PARAFAC model. In the experimental section, it is demonstrated
that real room recordings of 3 speakers by 2 microphones can be
separated using the method.

1. INTRODUCTION

The human auditory system solves the so-called cocktail party prob-
lem, i.e it separates out a single speech signal from a composition
of speech signals and possibly other interfering noises. This is an
instance of blind source separation (BSS). Machines capable of em-
ulating this function have potential applications in e.g. hearing aids
and audio communication. The convolutive mixture model accounts
for the various delays and attenuations of e.g. an acoustic mixture:

x[t] =

L−1�

k=0

A[k]s[t − k] (1)

where x[t] and s[t] are an N dimensional sensor vector and an R
dimensional source vector, respectively, sampled at discrete time t.
The matrices A[k] contain the impulse responses of the signal chan-
nels. The sources can be recovered blindly, i.e. A[k] unknown, up
to arbitrary filtering and permutation of source index.

In many cases, such as the cocktail party situation where the
speakers are independent on the timescale of interest, the problem
can to some extend be solved by algorithms that are based on inde-
pendent component analysis (ICA), [1]. In particular, the instanta-
neous mixture model, which arises as a results of L = 1, is a well-
solved problem, see, e.g., [2]. However, this mixing model (L = 1)
is inappropriate and insufficient for the separation of acoustically
mixed audio signals for the reasons already mentioned. ICA al-
gorithms determine st by assuming statistical independency of the
sources and certain properties of the distribution of st, where non-
Gaussianity, non-stationarity and non-whiteness are the most impor-
tant. Convolutive ICA algorithms, i.e. L > 1, have been devised by
e.g. [3] and [4]. The most efficient methods use transformation to
the discrete Fourier domain, where convolution approximately trans-
lates to multiplication, yielding a separate instantaneous ICA prob-
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lem for each evaluated frequency. As a result, the resulting arbi-
trary permutations across frequency problem must be resolved. Al-
gorithms that function in the time-domain, such as [5], can benefit
more directly from domain-oriented source modelling, but typically
at a higher computational cost.

Common to the algorithms mentioned above are that they as-
sume quadratic mixtures, that is, the number of sensors equals the
number of sources, or N = R. The class of mixtures, where R > N ,
are termed underdetermined.1 Instantaneous ICA algorithms have
been devised to solve the underdetermined problem, i.e. [6], [7] and
[8]. These methods assume a sparse distribution of the sources, ei-
ther directly in the time-domain or in a transformed domain.

An alternative approach to blind source separation is the use of
binary masks in the spectrogram, i.e. assigning each point in the
time-frequency plane to a source. The masks are often constructed
using segmentation cues inspired by the human auditory system,
such as interaural intensity and time differences (IID/ITD), [9]. Ef-
forts to combine ICA with binary masks have been undertaken by
[10]. A problem introduced by binary masks is that artifacts, or un-
natural sounds, may appear in the reconstructed signals.

The major contribution of this work is to generalize to the over-
complete case the robust algorithms of [3] and [11], which handle
quadratic mixtures relying solely on robust time-varying second or-
der statistics in the Fourier domain. The essentially time-varying
Gaussian signal model is an instance of the trilinear PARAFAC2

model, [12], the results from this field are employed to construct the
algorithm and certify the identifiability of the model under various
assumptions. One observation derived from the PARAFAC formula-
tion is that the source power spectra are identifiable for (N = 2,
R = 3) provided that the mixing process parameters (A[k]) are
available at that stage. As a consequence, the maximum posteriori
estimates of the sources can be computed as opposed to the usual bi-
nary mask reconstructions. A key component in determining A[k] is
the sparsity of the sources in the time-frequency plane, which allows
for estimation of this part of the model through k-means clustering,
[8]. As evidence of the usefulness of the approach, it is demonstrated
that speech mixtures (N = 2, R = 3) recorded in a real office envi-
ronment can be handled, see
www.imm.dtu.dk/∼rko/underdetermined.

In sections 2 and 3, the PARAFAC formulation of the blind
source separation problem is motivated. In sections 4 and 6, the
estimation of the parameters and the source inference, respectively,
are covered. The limits of identifiability are discussed in section
5. Implementation issues are summarized in section 7. The perfor-

1One-sensor separation is a topic in its own right and is not discussed
here.

2Parallel Factor Analysis. Also known as Canonical Decomposition
(CANDECOMP).

V  657142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



mance of the algorithm is gauged on benchmark audio data in the
experimental section.

2. PARALLEL FACTOR ANALYSIS

A thorough review of the following theory can be found in [13].
Consider the 3-way array xijk indexed by i ∈ [1, .., I], j ∈ [1, .., J ],
k ∈ [1, .., K]. The trilinear PARAFAC decomposition is defined:

xijk =
F�

f=1

aifbjfckf

with loading matrices (A)if = aif , (B)jf = bjf and (C)kf =
ckf . The PARAFAC model can equivalently be expressed in terms
of its matrices or ’slabs’:

Xk = Adiagk[C]B� (2)

where diagk[·] operating on a matrix constructs a diagonal matrix
with the kth row of the matrix as diagonal elements. The PARAFAC
model could equivalently be expressed along A or B. The matriza-
tion of the PARAFAC model is yet another representation:
XIJ×K = (B � A)C�, where the Khatri-Rao product is defined

(B � A) ≡

�
��

Adiag1[B]
...

AdiagJ [B]

�
��

The indices of XIJ×K indicate the direction and hence the dimen-
sions of the matrization. The former index varies more rapidly. A
sufficient condition for uniqueness was provided by Kruskal in [12]:

k[A] + k[B] + k[C] ≥ 2(F − 1) (3)

where the k-rank, denoted k[A], of a matrix A, is defined as the
maximal integer m such that any m columns of A form a linearly
independent set. Clearly, k[A] ≤ r[A], where r[A] is the rank of
A.

3. MODEL

The convolutive mixture of equation (1) forms the basis of the model.
Only second-order statistics in the Fourier domain, i.e. auto/cross
spectra are included in the analysis, which is similar to imposing a
multivariate Gaussian model on the data. The assumptions can be
summarized as:
A1: the sources, s[t], are zero mean, uncorrelated, i.e. 〈s[t]s�[t−τ ]〉
is a diagonal matrix for all τ .
A2: the signal channels of A[k] are constant on the time-scale of
analysis. No columns are collinear, as this would effectively consti-
tute a reduction of N .
A3: the autocorrelation functions 〈s[t]s�[t−τ ]〉 are time-varying as
in [3]. The variation patterns are independent for each source.
A4: At most one source is non-zero in any time-frequency block
({n, . . . , n + M − 1}, k), where M is the block length not to be
confused with the frame length, K. This effectively is an assump-
tion of sparsity as in, e.g., [8]. In figure 1, it is demonstrated that for
certain quasi-periodic signals such as speech, the number of (n, k)
bins required to represent the signal is indeed small.

The discrete Fourier transform (DFT) is applied to windowed
frames of xt, length K, obtaining:

x
(n)
k = Aks

(n)
k + e

(n)
k (4)
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Fig. 1. The sparsity of speech (Fs = 8kHz) under various condi-
tions presented as the minimal percentage of frequency bins required
to represent a given percentage of power. The raw time-domain
speech signal (TD) is shown as well as its time-frequency trans-
formation (FD-anechoic) and a version with simulated large-room
reverberation (FD-reverb). DFT lenght: K = 512, no overlap.

where x
(n)
k , Ak and s

(n)
k are the DFT’s of the corresponding time-

domain signals at discrete frequencies k ∈ [0, 1, . . . , K − 1] and
frame n. The residual term, e

(n)
k , is due to equation (1) being a

linear convolution rather than a circular one. When L 	 K, the
mismatch vanishes, that is 〈 |ek|

|xk| 〉 → 0. Furthermore, the auto/cross

power spectra of xt as a function of frame index n, C(n)
k , are related

as follows to the power time-spectra of st:

C
(n)
k = AkD

(n)
k AH

k + E
(n)
k (5)

where D
(n)
k is a diagonal matrix (due to A1) with the power of

the sources in time-frequency bin (n, k) as diagonal elements. The
channels, Ak, are independent of n due to A2. The power spectrum
residual, E

(n)
k can be neglected when e

(n)
k is small. As was also

noted in [11], any linear channel that exhibits a sufficiently rapidly
decaying autocorrelation function can be treated by our approach,
not just a convolutive channel.

By comparing with equation (2), it is seen that equation (5) is
approximately a PARAFAC model. The following reformulation of
(5) is convenient:

CNN×K [k] = (Ak � A∗
k)Λ�

k (6)

where CNN×K [k] is the matricized auto/cross power at frequency k
and (Λk)nj is the power of source j at time-frequency bin (n, k).

4. PARAMETER ESTIMATION

A standard approach to estimating the parameters of equation (6)
is the alternating least squares algorithm (ALS), which alternatingly
minimizes the Frobenius norm of RNN×K [k] − CNN×K [k] with
respect to the matrices Ak and Λk, where RNN×K [k] is the esti-
mated auto/cross power spectra of xt, e.g.:

Λ̂�
k = arg min

Λ

���RNN×K [k] − (Ak � A∗
k)Λ�

k

���
2

(7)

The arbitrary scaling of the model is fixed by normalizing the columns
of Ak so that ‖ai,k‖2 = 1 and zeroing the phases of the 1st row:
� (A)1i,k = 0 ∀i. The solution to equation (7) is just a least-squares
fit:

Λ̂�
k = (Ak � A∗

k)
†
RNN×K [k] (8)
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assumptions bound
I A1, A2, A3 2N − 2 ≥ R
II A1, A2, A3, A4 1

2
N(N + 1) ≥ R

Table 1. Bounds of identifiability of the source spectrograms de-
pending on the set of model assumptions.

where † is the pseudoinverse operator. An alternative means of esti-
mating Ak and D[k, n] from C[k, n] is the application of a joint
diagonalization algorithm such as in [14]. However, the ALS is
conceptually simple and has good convergence properties under cer-
tain circumstances as was demonstrated in [11]. In the case of a 1-
component model, i.e. when Ak and Λk consist of a single column
(ak and λk), a particularly simple solution exists:��

n

R
(n)
k

�
ak =

��
n

�
λ

(n)
k

�2
�
ak (9)

where R
(n)
k and λ

(n)
k are the measured auto/cross power of xt and

the power of st in time-frequency bin (n, k), respectively. The ak

corresponding to the maximal eigenvalue is the least-squares esti-
mate.

5. IDENTIFIABILITY

In the following will be discussed mainly the limits of recovering the
time-varying source power spectra, Λk, i.e. the spectrograms. The
MAP inference of s

(n)
k is treated in section 6. It was mentioned in

section 1 that Λk can only be blindly recovered up to an unknown
scaling and ordering, i.e. it is only possible to estimate PkHkΛk,
where Hk and Pk are scaling and permutation matrices, respec-
tively. The frequency permutation problem, i.e. estimating Pk for all
k, can be remedied by defining a similarity measure across frequen-
cies as in e.g. [11]. The scaling matrix was fixed in the parameter
estimation process due to certain assumptions about the scale of Ak.

The identifiability of the source spectrograms, Λk, is determined
in the general blind case (Ak is unknown) under assumptions A1, A2
and A3. The uniqueness theorem (3) then yields a lower bound for
identifiability:

2N ≥ R + 2

where the full rank of Ak and Λk was assumed, consequences of A2
and A3, respectively. This means that Λk can be estimated in many
cases where R > N , however notably excluding the N = 2, R = 3
case. In [15], it was shown that the bound is tight for R = 3, but not
necessarily for R > 3.

In order to retrieve the source power spectrograms in the N = 2,
R = 3 case, the sparsity assumption, A4 is required. The rationale
is that if only a single source is active in M consecutive frames, the
local dimensionality of the PARAFAC model will be R = 1, and
the corresponding column of Ak is available through equation (9).
When estimating ak across time, the estimates should ideally occupy
R discrete points in space pertaining to the R columns of Ak. In a
realistic setting, model bias and slight violations of A4 will cause
an amount of dispersion of the estimated ak around the true values.
Provided this effect is not too severe, Ak can still be estimated by
means of a clustering algorithm. The dispersion around the cluster
centers can be quantified by computing the within-class variance, Q.

After Ak has been acquired through the clustering, Λk can be
estimated via equation (8) from all frames under less strict conditions
on R and N . The typical rank of (A�A∗) is min

�
1
2
N(N + 1), R

�
.

• discrete Fourier transform Hann-windowed data
• prewhiten
• for all frequencies k:
• for all blocks of frames {n, n + 1, . . . , n + M − 1}:
• fit 1-component PARAFAC model

• estimate Ak via k-means clustering of ak estimates
• compute Λk from Âk

• compute MAP estimate of sk from Ak and Λk

• solve permutation problem using power corr. across freq.
• inverse prewhiting
• reconstruct time-domain signal by IDFT and overlap-add

Table 2. The blind source separation algorithm for underdetermined
convolutive mixtures of sources that are sparse in the time-frequency
plane.

Therefore, Λk generally has a unique solution if 1
2
N(N + 1) ≥ R.

As a consequence, the source spectrograms can be recovered when
N = 2, R = 3, provided Ak is known or has been estimated suffi-
ciently accurately. The identifiability of Λk including or excluding
the sparsity assumption is summarized in table 1.

6. SOURCE RECONSTRUCTION

Once Ak and Dn
k have been estimated, the sources can be inferred

from the data and the parameters of the model. A maximum poste-
riori (MAP) scheme, which builds on the joint Gaussianity of st and
xt and the assumptions A1-A3, is employed as suggested in [3]:

ŝk = D
(n)
k Ak

�
AkD

(n)
k AH

k

�−1

xk

In order to cancel the effects of the arbitrary scaling of Ak and Dn
k ,

the sources are computed as they appear at the sensors, e.g. the
j’th source at the i’th sensor: (Ak)ij ŝj,k. Where the number of
sources and sensors are locally equal in the time-frequency plane, the
above simply reduces to sk = A−1

k xk. In case of underdetermined
mixtures, the degree of success of the MAP estimation depends on
the sparsity assumption, A4. Reconstruction in the time domain is
performed by inverse DFT and overlap-add.

7. ALGORITHM

The full set of assumptions, A1-A4, form the basis of the presented
algorithm, yet a number of implementational issues remains. A pre-
processing step is included to better condition the data for clustering
and separation. In a band of frequencies a whitening matrix is ap-
plied to xk, i.e. x̃k = Wxk, so that 〈x̃kx̃

H
k 〉 = I, where averaging

is over a suitable bandwidth and the signal length. The clustering
is carried out in the polar coordinates of ak using k-means. This
requires the distance measure to be able to handle circularity. To
be more resilient against outliers and violations of the sparsity as-
sumption, the median rather than the mean was taken as the cluster
center.

The problem of permutation across frequencies was solved by
iteratively growing a set in which the permutations are corrected.
The measure of similarity is correlation of amplitude as in e.g. [11].
Starting from the highest frequency index, k = K−1, to the lowest,
k = 0, the permutation matrix Pk was chosen so that it (greedily)
maximizes the correlation coefficients of
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Fig. 2. Effects of the block length M on the clustering of ak. Left:
Within-cluster variance, Q, in 4 frequency bands. Right: The sig-
nal to interference (SIR) gain as a function of the segment length
M . The results were obtained by averaging across the sources of 3
underdetermined mixtures, K = 256.

K = 256 K = 512 Araki et al.
mmf 12, 13, 11 16, 15, 10 14, 14, 7
mmm 12, 7, 15 15, 8, 16 11, 4, 14
fff 10, 11, 16 8, 9, 15 5, 18, 18

Table 3. Estimated signal to interference (SIR) ratios for R = 3,
N = 2 mixtures in a simulated reverberant room. f’s and m’s repre-
sent male and female speakers in the mixture.

|Pkŝk| to
�K−1

k′=k+1 |Pk′ ŝk′ |. This simple method proved fairly ro-
bust, and better results were not obtained with the approach of [11].
The algorithm is summarized in table 2.

8. RESULTS AND DISCUSSION

For the initial simulations, experimental audio data generated by re-
searchers Araki et al., see e.g. [10], was used.3 In each of the mix-
tures, R = 3 speech signals, sample rate Fs = 8kHz, were con-
volved with real room impulse functions of length τr = 130ms to
construct N = 2 mixtures. The microphones were situated dm =
4cm apart, the distance to the speakers was ds = 110cm and the an-
gles to the microphones were θ1 = 50◦, θ2 = 100◦ and θ3 = 135◦.
The room dimensions were ≈ 4m × 4m × 3m. Mixture fragments
of length T = 7s were used. To measure the degree of separa-
tion, the signal-to-interference ratio (SIR) quality index was com-
puted. The SIR’s were estimated from the original and estimated
sources by means of the BSS_EVAL toolbox, see [16] for defin-
itions, and provided a reasonable correlate with human subjective
evaluation.4 Using the sparse algorithm, results on mixtures of same-
sex and mixed-sex speech were obtained, see table 3. For reference,
the quality measures were also computed for the audio files of [10].
The new method appears to exhibit similar performance to the ref-
erence. These results were replicated in a real office environment
- 3 male speakers reading aloud from Hans Christian Andersen’s
fairy tales were separated using the algorithm. The room measures
4.25m×5.82m×3.28m. The values of dm, ds were left unchanged
from the generated mixtures. The estimated source signals can be
appreciated at www.imm.dtu.dk/∼rko/underdetermined/index.htm.

3The audio wave files are available at
www.kecl.ntt.co.jp/icl/signal/araki/nbficademo.html.

4The toolbox is downloadable at www.irisa.fr/metiss/bss eval/. The script
bss decomp filt.m was used with L = 100.

Furthermore, the effect of the block length M was assessed, us-
ing the same convolutive mixtures, K = 256. It is seen in figure 2
that the within-class variance Q at most frequencies approximately
peaks at M ≈ 10. The SIR index has a similar optimum, suggest-
ing that Q can be used to determine the stationarity properties of the
signal and select an optimal model order.
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