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ABSTRACT

Recently, shifted Non-negative Matrix Factorisation was de-
veloped as a means of separating harmonic instruments from
single channel mixtures. However, in many cases two or more
channels are available, in which case it would be advanta-
geous to have a multichannel version of the algorithm. To
this end, a shifted Non-negative Tensor Factorisation algo-
rithm is derived, which extends shifted Non-negative Matrix
Factorisation to the multi-channel case. The use of this algo-
rithm for multi-channel sound source separation of harmonic
instruments is demonstrated. Further, it is shown that the
algorithm can be used to perform Non-negative Tensor De-
convolution, a multi-channel version of Non-negative Matrix
Deconvolution, to separate sound sources which have time
evolving spectra from multi-channel signals.

1. INTRODUCTION

In recent years, matrix factorisation techniques have been used
as means of attempting single channel sound source separa-
tion. These methods include the use of Independent Subspace
Analysis (ISA), Sparse Coding (SC), and Non megative Ma-
trix Factorisation (NMF) [1, 2, 3]. These techniques attempt
to factorise a magnitude spectrogram X into matrix factors A
and S such that X ≈ AS, where X is an n x m spectrogram,
where n is the number of frequency bins, and m is the num-
ber of frames in the spectrogram, A is an n x r matrix, and
S is an r x m matrix, with r smaller than n or m, where r
is the chosen rank of the decomposition. The columns of A
contain frequency basis functions, while the associated rows
of S contain corresponding amplitude envelopes for the fre-
quency basis functions. Individual elements of A and S can
then be used to attempt resynthesis of individual components
or sources in the input data.

All of the above methods have a shortcoming in that it
cannot be assumed that natural sounds will have fixed spectra
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over time. In an attempt to overcome this problem, convolu-
tive forms of SC and NMF have been proposed [4, 5]. Both
of these methods attempt to describe a source as a sequence
of successive spectra and a corresponding amplitude envelope
across time.

Another shortcoming in the standard factorisation tech-
niques such as SC and NMF is that a single basis function
is typically required to represent each note of a given instru-
ment. This means that for source separation of instruments
playing melodies, some method of clustering the basis func-
tions together is required. Methods for clustering basis func-
tion have been proposed by Casey and Virtanen [1, 2]. How-
ever, it is difficult to obtain a correct clustering in many situ-
ations for reasons discussed in [6].

As a result of this, shifted Non-Negative Matrix Factori-
sation has recently been proposed to deal with the situation
where different notes from the same instrument occur over
the course of a spectrogram [7]. Shifted Non-Negative Ma-
trix Factorisation assumes that the notes belonging to a sin-
gle source consist of translated versions of a single frequency
basis function which represents the typical frequency spec-
trum of any note played on the instrument in question. Using
this assumption requires that the chosen time-frequency rep-
resentation has logarithmic frequency resolution, such as the
Constant Q transform [8]. If the center frequencies in the rep-
resentation are set so that fi = fi−121/12, where fi is the
center frequency of band i, then the spacing between center
frequencies will match that of the even-tempered tuning sys-
tem [9]. As a result, translating a frequency basis function of
a note up by one bin is equivalent to a pitch change of one
semitone.

For the remainder of this paper the following conventions
are used. Indexing of elements within a matrix or tensor, usu-
ally denoted by Xi,j is instead notated as X(i, j). Tensors are
denoted by calligraphic uppercase letters, such as T . Con-
tracted product multiplication of two tensors is defined as fol-
lows. If W is a tensor of size I1 × · · · × IN × J1 × · · · × JM

and Y is a tensor of size I1 × · · ·× IN ×K1 × · · ·×KP then
contracted product multiplication of the two tensors along the
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first N modes is given by:

〈WY〉{1:N,1:N}(j1, . . . , jm, k1, . . . , kp) =
I1∑

i1=1

· · ·
IN∑

iN=1

W(i1, . . . , iN , j1, . . . , jM )

Y(i1, . . . , iN , k1, . . . , kP )

Using this notation, the modes to be multiplied are specified
in the subscripts that follow the angle brackets, in line with
the conventions adapted by Bader and Kolda in [10]. Outer
product multiplication is denoted by ◦, ./ denotes element-
wise division and .∗ denotes elementwise multiplication.

Translation is carried out by means of a translation ma-
trix. For an n x 1 vector, an n x n translation matrix can be
used. This translation matrix can be obtained by permuting
the columns of the identity matrix. To achieve a shift up by
one position, the required translation matrix can be obtained
from I(:, [n, 1 : n − 1]) where I denotes the identity matrix,
and where the ordering of the columns is defined in the square
brackets. For k possible translations, the k translation matri-
ces are grouped into a translation tensor T of size n x k x n,
where T (:, k, :) contains the kth translation matrix.

For r sources, the frequency basis functions representing
each source can be grouped into an n x r tensor, denoted A.
Following from this, a spectrogram X can be decomposed as:

X ≈ X̂ = 〈〈T A〉{3,1}S〉{2:3,1:2}

where S is a size k x r x m tensor containing the time en-
velopes associated with each translation of each source.

For the decomposition described above, the cost func-
tion proposed by Lee and Seung [11], called the generalised
Kullback-Liebler divergence, was used:

D(X‖X̂) =
∑
ij

(
X(i, j)log

X(i, j)
X̂(i, j)

− X(i, j) + X̂(i, j)
)

From this, update equations for A and S were derived, and
the algorithm was shown to be capable of separating mixtures
of harmonic instruments from single channel recordings.

2. SHIFTED NON-NEGATIVE TENSOR
FACTORISATION

As noted above, matrix factorisation techniques have been
used for sound source separation of single channel mixtures.
However, most musical recordings from the past 40 years are
two channel recordings created from linear mixtures of in-
dividual instrument recordings. Therefore, for any given in-
strument, the only difference between the channels lies in the
intensity of the instrument. As a result, the same instrument
basis function could be used to describe a given instrument in
either channel, the only difference being the gain of the basis
function in each channel. It is proposed to learn a single set of

instrument basis functions which can be used to describe both
channels of the input signal, a corresponding set of amplitude
basis functions, and a set of corresponding gains which decide
how loud a given set of instrument and amplitude basis func-
tions are in each channel, thus takes advantage of the fact that
certain instruments will be louder in some channels over oth-
ers. Though aimed at two channel recordings, the derivation
given below can deal with any number of linearly instanta-
neously mixed channels.

The signal model can then be described as:

X ≈ X̂ =
r∑

t=1

〈〈(T ◦ G(:, t))A(:, t)〉{3,1}S(:, t, :)〉{2,1}

where X is a tensor of size n x l x m, containing the spec-
trograms of the l channels, and X̂ is an approximation to X .
T is a translation tensor as described previously, G is a tensor
of size l x r, containing the gains for each instrument in each
channel, and A and S are as before.

The generalised Kullback-Liebler divergence, extended to
3 dimensions, is again used as a cost function. Eliminating
terms in X which are constant, and taking the derivative with
respect to G yields:

G(:, t) = G(:, t)+
λ{〈PS(:, t, :)〉{[1,3],[1,3]} − 〈BS(:, t, :)〉{[1,3],[1,3]}}

where
D = X ./X̂

P = 〈〈T D〉{1,1}A(:, t)〉{2,1}

B = 〈〈T O〉{1,1}A(:, t)〉{2,1}

and where O is an all ones tensor of size equal to D. The
update equation for G can be converted to a multiplicative up-
date rule by setting λ = G./〈BS(:, t, :)〉{[1,3],[1,3]}, yielding:

G(:, t) =
G(:, t). ∗ [〈PS(:, t, :)〉{[1,3],[1,3]}./〈BS(:, t, :)〉{[1,3],[1,3]}]

Update equations can be derived for A and S in a similar
manner. The update equation for A is given by:

A(:, t) = A(:, t).∗
[〈Q(:, :, t, :)S(:, t, :)〉{[1,4],[1,3]}./〈C(:, :, t, :)S(:, t, :)〉{[1,4],[1,3]}]

where
Q = 〈(T ◦ G)D〉{[1,4],[1,2]}

C = 〈(T ◦ G)O〉{[1,4],[1,2]}

The update equation for S is given by:

S = S. ∗ [〈RD〉{[1,3],[1,2]}./〈RO〉{[1,3],[1,2]}

where

R(:, :, :, t) = 〈(T ◦ G(:, t))A(:, t)〉{3,1}
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Once G, A, and S are randomly initialised to positive values,
the use of multiplicative updates ensures that the factorisation
will be non-negative. Although the convergence proofs used
for NMF (see [11]) no longer apply, in practice it has been
observed that the algorithm converges reliably.

The algorithm was implemented in Matlab using the Mat-
lab Tensor Classes available from [12]. Fig. 1 shows the orig-
inal waveforms of flute,viola and piano respectively, while
Fig 2 shows a two-channel mixture of these sources. Fig 3
shows the separated waveforms obtained with the number of
instruments set to 3 and the number of translations set to 7. It
can be seen that the sources have been separated well, and on
listening, the individual source melodies are clear with some
small interference from the other instruments. The timbres of
the instruments have been captured reasonably well, though
the attack of the piano notes is missing. This demonstrates
that the algorithm is capable of separating harmonic instru-
ments from multichannel mixtures. However, the algorithm is
sensitive to the chosen number of translations, which is anal-
ogous to the rank of the decomposition.
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Fig. 1. Original waveforms of flute, viola and piano

3. NON-NEGATIVE TENSOR DECONVOLUTION

The shifted Non-negative Tensor Factorisation algorithm can
also be used to perform a multichannel version of convolutive
NMF. This can be achieved by presenting X to the algorithm
in a different way. The dimensions of X are rearranged so
that instead of an n x l x m tensor being presented, a tensor
of size m x l x n is input, or in other words the frequency
and time dimensions are swapped around. As a result, A
now recovers source amplitude envelopes which are shifted
across time, while S recovers a sequence of successive spec-
tra corresponding to the shifted envelopes. In a similar way,
shifted Non-negative Matrix Factorisation can also be used to
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Fig. 2. Two-channel mixture of flute, viola and piano
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Fig. 3. Separated waveforms of flute, viola and piano

perform Non-negative Matrix Deconvolution. Therefore, the
algorithm can be used to capture sound sources which have
spectra which evolve with time, such as drums.

As an example of the use of the algorithm, Fig. 4 shows
a two channel mixture of snare drum, bass drum and hi-hat.
Magnitude spectrograms were obtained for each channel and
combined into a tensor, which was re-arranged as described
above. The number of sources was set to 3 and the number of
shifts set to 10. Fig. 5 shows the recovered waveforms of the
separated sources. It can be seen that the drum sounds have
been successfully separated using the algorithm, though at the
loss of part of the attack transients of the sources.
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Fig. 4. Mixture waveforms of snare, bass drum and hi-hat
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Fig. 5. Separated waveforms of snare, bass drum and hi-hat

4. CONCLUSIONS

An algorithm which performs shifted Non-negative Tensor
Factorisation is presented, extending shifted Non-negative Ma-
trix Factorisation to the multi-channel case. This is shown
to be capable of separating harmonic instruments from mul-
tichannel recordings. The algorithm can also perform Non-
negative Tensor Deconvolution, an extended version of Non-
negative Matrix Deconvolution, which captures sound sources
with time-varying spectra. However, there are problems with
the method, namely separation degrades as the number of
sources increases for a given number of channels. Also, the
algorithm can be sensitive to the chosen number of transla-
tions. This remains an open issue in all matrix or tensor fac-
torisation algorithms, and is an item for future research.
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