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ABSTRACT

We present a Gibbs sampler for estimating parameters
of the Independent Factor model. Independent Factor Anal-
ysis (IFA) is a generalization of Mixtures of Factor Analyz-
ers, where instead we learn nonlinear subspaces in data. IFA
can also be considered a method for blind source separation.
The IFA generative model is hierarchical, with each factor
modeled as an independentMixture of Gaussians, each mix-
ture component representing a factor state. Computing ex-
pectations over factors quickly becomes intractable with in-
creasing number of factors as this requires summation over
exponentially many state configurations, making parameter
estimation via Expectation Maximization (EM) with an ex-
act E-step infeasible. Unlike the Variational method that has
been proposed, we take a simulation based approach to ob-
tain exact parameter estimates. We define prior distributions
and use a Gibbs sampler to obtain samples from the param-
eter posterior. Application to synthetic data demonstrates
effectiveness of the method in estimating model parameters
and robustness to model permutation invariance.

1. INTRODUCTION

Expectation Maximization (EM) is often ideal for perform-
ing unsupervised learning in models assuming latent data
structure. Such models allow for efficient computation of
the expectation over hidden data (E-step), e.g. Mixture of
Factor Analyzers [1]. On the other hand, when the gener-
ative model is hierarchical, i.e. observations have a com-
binatorial dependence on parameters of hidden data-model,
computing expectations of the hidden (data) factors then re-
quires marginalizing over all possible configurations (states)
of the underlying parameters. The computational expense
of marginalization increases exponentially with the number
of hidden factors. Some examples of hierarchical models
include the Cooperative Vector Quantization, Factorial Hid-
den Markov [2] and, the model of interest in this paper, the
Independent Factor (IF) models.

Both simulation-based and variational approaches have
been applied to overcome intractability of computing expec-
tations over hidden state configurations for IFA. Olshausen

& Millman [3] applied a stochastic EM algorithm, replac-
ing the exact E-step with a stochastic simulation and using
steepest descent to perform the M-step. The gradient update
requires computing an inverse Hessian matrix for each ac-
cepted state change, at each iteration of the algorithm. Also,
there is a separate analytic form of the state distribution for
each state (applied to the binary case). As the number of
factors increases, there are exponetially many states, mak-
ing practical implementation difficult. In [4], Utsugi applied
a similar stochastic EM algorithm to the Ensemble of Inde-
pendent Factors (EIF) model, a simplified version of IFA:
the factors are not modeled as MoGs, but as Gaussians with
zero mean and unit diagonal covariance matrices. Exact cal-
culation of the E-step was replace with a Gibbs update. The
stochastic E-step also does not generalize, suffering from
the same problem as in [3]. A Variational EM algorithm was
succesfully applied to obtain maximum likelihood estimates
for IFA in [5], where the true likelihood was approximated
by a factorial distribution.

We take a Bayesian approach to IFA, specifying priors
over model parameters, and use MCMC to estimate parame-
ters. In Section 2, we describe the IF model and exact factor
estimation. We present a Gibbs sampler for estimating the
IF parameters in Section 3. Finally, we apply the algorithm
to simulated data and discuss implementation and results in
Section 4.

2. INDEPENDENT FACTOR ANALYSIS

2.1. Independent Factor Model

A p-dimensional observation, which we denote y ∈ Rp

can be represented by an m-dimensional vector, x ∈ Rm

(factor), such that m � p. The factors are related to obser-
vations via a linear transformation plus additive noise:

yi = Hxi + ui, i = (1, ..., N) (1)

where H ∈ Rm×p is a matrix of factor loadings and u ∈
Rp is the noise vector such that u ∼ Np(0, Λ), with diag-
onal noise covariance matrix Λ = diag(λ11, λ22, ..., λpp).
Nc(a,B) denotes a c-dimensional normal distribution with
mean vector a and covariance matrix B. We have N sam-
ples of the observation. Thus we write Y = [y1, ...yN ] ∈
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Rp×N and X = [x1, ...xN ] ∈ Rm×N . Exclusive of the
parametric model of the factors, this model is exactly the
same as in Factor Analysis(FA). From (1), the conditional
distribution of an observation is

p(y|x) = N(Hx,Λ), (2)

also as in FA.
The jth factor follows a mixture of nj Gaussians, with

qj = (1, ..., nj) means µj,qj , variances νj,qj , and mixing
proportions πj,qj . We assume a fixed value for nj . Defining
the parameter vector for the j th factor as
θj = (µj,qj , νj,qj , πj,qj ), the factor probability distribution
is

p(xi|θj) =
nj∑

qj=1

πj,qj N(µj,qj , νj,qj ), (3)

As with standard mixture distributions, 0 ≤ πj,qj ≤ 1 and∑
qj

πj,qj = 1. The factor model uses the components of
the Mixture of Gaussians (MoGs) as hidden states selected
according to the state vector q = (qj)

p
j=1. Each state is se-

lected with probability p(qj) = πj,qj . Using (3), the joint
probability of the factors is formed by taking the product
over the MoGs of the m factors, the factors being indepen-
dent:

p(x|θ) =
m∏

j=1

p(xi|θj)

=
m∏

j=1

∑
q

πj,qj N(µj,qj , νj,qj ), (4)

where q = (q1, q2, ..., qm) and the summation is performed
over all possible state configurations, q. We summarise
terms in (4) as,

πq =
m∏

j=1

πj,qj = πj,q1 . . . πp,qm

µq = (µq,q1 , . . . , µp,qm)
Vq = diag(ν1,q1 , . . . , νp,qm)

The factor distribution is a factorial MoG and is similar to
Co-operative Vector Quantization in the co-dependence of
factor parameters across all the hidden states. For a given
state configuration q, the conditional distribution of the fac-
tors is

p(x|q) = N(µq,Vq).

In standard FA, the factor distribution would be zero mean
with unit variance, whereas in IFA the factor mean and vari-
ance are determined by the state vector q.

We define the vector over the collective model parame-
ters as W = (H,Λ, θ). The complete-data likelihood fac-
torizes as

p(q,x,y|W ) = p(q)p(x|q)p(y|x) (5)

We refer the reader to Attias’ paper [5] for a more detailed
exposition of IFA.

2.2. Intractability of Factor Estimation

Estimating factors under the IF generative model is simi-
lar to FA. Integrating over the factors, the likelihood of the
observed data is

p(y|q, W ) = N(Hµq,HVqHT + Λ).

Starting from (5), we can derive the conditional distribution
of the factors as

p(x|q,y) = N(ρq(y),Σq) (6)

Σq = (HTΛH + V−1
q )−1 (7)

ρq(y) = Σq(HTΛ−1y + V−1
q µq)−1 (8)

Again the only difference between IFA and FA is that the
factor means and variances are determined by q. To obtain
estimates of the factors, we must marginalize p(x,q|y) over
q:

p(x|y) =
∑
q

p(x|q,y)p(q|y)

Marginalization (E-step) requires
∏

j nj sums at each iter-
ation of EM, quickly becoming intractable as the number
of underlying factors (and their states) increases. To over-
come this, we present a Gibbs sampler to generate samples
from the posterior distribution of W. The complexity of the
algorithm is linear in the number of factors.

3. ESTIMATING PARAMETERS VIA GIBBS
SAMPLING

We use the Gibbs sampler to obtain samples from the pos-
terior distribution of the collective parameter set W. The
algorithm can be described in two stages [6]: (i) sample
hidden data: state vector q and factors x according to (6),
and (ii) sample W from the parameter posterior. To ob-
tain a sample of the state vector, we perform one cycle of
a Gibbs Sampler with invariant distribution p(q|y, W ) ∝
p(y|q, W )p(q), sampling the jth state according to p(qj) ∼
p(qk �=j |y, W ).

3.1. Parameter Priors

We use conjugate priors, for convenient sampling from the
parameter posterior. For the factors, we use a hierarchical
prior structure and data dependent initialisation for MoGs
similar to [7]. As the factors are independent and may have
widely different supports, we use separate priors for each
factor.

p(θj) = p(µj,qj |νj , κj)p(πq|γ)p(νj,qj |αj , βj)p(βj).
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The conjugate priors for the j th factor are

µj,qj ∼ N(ηj , κ
−1
j ) νj,qj |β ∼ IG(2αj , 2βj)

πq ∼ Dir(γ) βj ∼ Gam(2g, (2h)−1)

where βj is a hyperparameter and (ηj , αj , γj, g, h) are scalars.
IG, Gam and Dir denote the Inverse Gamma, Gamma and
Dirichlet distributions, respectively.

To enforce sparsity on the mixing matrix H, we use
an Automatic Relevance Determination (ARD) [8] prior on
the columns, H.i, of the mixing matrix. Thus, we treat
∆ as a hyperparameter with gamma distribution: p(∆) ∼
Gam(a, b), where (a, b) are parameters of the hyperprior
on ∆.

p(Hij) = N(0, δ−1
ij ) p(δij |a, b) = Gam(a, b),

Finally, we use a Gamma prior on the elements of the noise
covariance matrix λ−1

ij ∼ Gam(α
2 , τ

2 )

3.2. The Algorithm

Parameter estimation can be described in two stages: we
first draw samples of the factors and the state configuration
and then draw samples from the resulting factor model. Af-
ter initialising parameters and hyperparameters (W (0), β(0)),
the tth iteration of the Gibbs sampler with nj , (j = 1...m)
mixture components for each factor proceeds as follows.

• Sample factors and state vector q
xt ∼ Nm(Σq(HT Λ−1y + Vqµq), Σq)
qt ∼ p(q(t−1)|y, W (t−1))

• Sample factor parameters W (t) and β
(t)
j

– For j=1:m, i=1:p,
β

(t)
j ∼ Gam(2g+2mα, (2h+2

∑m
j=1 νj,qj )

−1,(t−1))

p(z(t)
nj = i) ∝ π

(t−1)
j,qj

N(µ(t−1)
j,qj

, ν
(t−1)
j,qj

),
πq

(t) ∼ Dir(γ + ni1, ..., γ + nim)
ν

(t)
j,qj

∼
IG(2α+nij , 2β(t)+

∑
j:z

(t)
j =i

(x(t−1)
ji −µ

(t−1)
j,qj

)2)

δji ∼ Gam(a + 1
2 , b + Hji(t−1),2

2 )

– For j=1:m,
H

(t)
.j ∼ N(mj , Rj|∆.j)

λ
(t),2
jj ∼ Gam(N+α

2 ,
Sjj+τ

2 )

z
(t)
nj is the state of the nth sample of the jth factor and nij

the number of factor samples allocated to the i th state of the
jth factor. Rows of the hyperparamter ∆ on H are obtained
from the prior as ∆i = diag(δij)m

j=1 and i = 1, ..., p. Fac-
tors are sampled from Normal distributions with mean m j

and covariance matrix Rj such that

mj = (λii, ∆−1
i + X ′X)−1Y X.i

Rj = (λii + ∆−1
i (X ′X))−1

Elements λii of noise covariance matrix Λ are sampled from
an InverseGamma distribution dependent on S ii = diag(S),
where

S =
N∑

i=1

(yi − Hxi)(yi − Hxi)T

After a burn in period, we obtain samples from the posterior
over model parameters. Since a Gibbs sampler allows sam-
pling from distributions known only up to a constant of pro-
portionality, we do not have to bear the expense of comput-
ing normalizing constants for p(q|y, W ). To marginalise
over states, we only consider samples x(t). Each iteration is
linear in the number of hidden states and is much less com-
putationally demanding than the exponential dependence of
EM with an exact E-step.

4. DISCUSSION AND IMPLEMENTATION

As in FA and ICA, IFA suffers from scaling and permuta-
tion invariance. To remove scale invariance (up to a factor of
±1), we assume the factors are of unit variance and postpro-
cess parameter samples to ensure factor estimates are also of
unit variance:

µj,qj → µj, qj

σj
νj,qj → νj, qj

σ2
j

Hij → Hijσj

In [5], the structure of the true mixing matrix was used to
overcome permutation ambiguities in estimates of H. In
trying to maintain a blind approach to parameter estimation,
we do not utilise knowledge of the known mixing matrix.
Instead, we model factors with more mixture components
than required (assuming prior knowledge of the n j’s). How-
ever, in practice the algorithm did not exhibit permutations
since Gibbs samplers do not mix well across modes.

We tested the algorithm on data with factors xi ∈ R3

mixed with H in Table 1 to obtain N = 200 sample ob-
servations yi ∈ R10. The factors were trimodal (nj = 3),
bimodal(nj = 2) and heavy tailed(nj = 3); all factors were
modeled with three states. Additive noise was sampled from
N10(0, .1I). The initial factors were chosen as the first 3
principal components of the observations.

Table 1 and Figure 4 show parameter estimates obtained
from the last 150 samples after 300 iterations. The first fac-
tor was learned up to a -1 scale. We found convergence of
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Fig. 1. Estimated factors and histogram of true factors; Note
that factor 1 was learnt to a -1 scale

the algorithm was sensitive to the initialization of the factors
and the chosen latent space dimensionality. Initialization to
the required number of prinicpal components of the obser-
vations was found to provide suitable convergence. While
inclusion of extra mixture components may make the al-
gorithm robust to permutations, it may also ”confuse” the
algorithm. When the chosen dimensionality is greater than
the true one, the algorithm tends to exhibit overfitting. Un-
derspecification also leads to poor exploration of the latent
factors. In spite overspecifying the latent dimensionality of
the second factor, the algorithm was still able to attain good
estimates of the true factors.

5. FUTURE WORK

Modeling factors by more mixture components wastes com-
putational effort when not all the components are needed.
Most methods assume knowledge of the number of mixture
components nj , although some work has been done using
ARD to estimate nj . We are currently investigating jump
diffusion methods for performing model selection.

H =

[ .8 .8 .8 .8 0 0 0 0 0 0
0 0 0 0 .8 .8 .8 0 0 0
0 0 0 0 0 0 0 .8 .8 .8

]T

Ĥ =

[ −.81 −.83 −.81 −.81 −.029 .016 −.021 .01 .04 −.00
.03 .05 .00 .04 .78 .83 .77 −.08 −.06 −.05
.00 .02 −.02 .00 −.02 −.01 −.03 .83 .81 .88

]T

µj νj πj µ̂j ν̂j π̂j

x1 (2.98,1.79,.60) (.06,.06,.06) (.33,.33.33) (-2.96,-.56,-1.70) (.04,.03,.04) (.32,.35,.33)
x2 (.15,2.24) (.02,.09) (.33,.67) (.14,2.49,2.05) (.03,.04,.04) (.29,.36,.35)
x3 (-2.20,-2.20,-2.20) (.77,.19,1.93) (.33,.33,.33) (-2.13,-2.11,-2.03) (1.12,.47,1.38) (.30,.33,.36)

Table 1. Summary of Parameter Estimates, Ŵ
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