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ABSTRACT

We consider the problem of separating instantaneous
mixtures of different sound sources in multi-channel au-
dio signals. Several methods have been developed to solve
this problem. Independent component analysis (ICA) is cer-
tainly the most known method and the most used. ICA ex-
ploits the non-Gaussianity of the sources in the mixtures. In
this study, we propose an improved signal separation algo-
rithm where simultaneously we increase the non-Gaussian
nature of signals and we initiate the preliminary separation.
For this, the observations are transformed into an adequate
representation using the wavelet packets decomposition. In
this study, we consider the instantaneous mixture of two
sources using two sensors. We validate our approach by
using synthetic and recorded audio signals. Preliminary re-
sults show a strong improvement when compared to con-
ventional ICA (FastICA), with specific signals.

1. INTRODUCTION

Source separation is an interesting problem in signal process-
ing. Its objective is to extract meaningful signals from a
mixture of many signals with minimum a priori information
on the mixture process. In the instantaneous mixture case,
the source separation problem can be solved by many ap-
proaches using the ICA algorithm. One approach estimates
the unmixing matrix by minimizing the mutual information
between the separated sources [1]. Others exploit the non-
Gaussianity of the source signals and perform separation by
maximizing this non-Gaussianity [2]. For example Tanaka
et al. [3] have developed a method using a subband decom-
position in combination with ICA. In [4], Kisilev et al have
used geometric algorithms to separate the mixed signals. In
this paper, we propose an algorithm which uses the idea of
applying a preprocessing in the transformed domain but the
separation is performed in the time domain.

1.1. Restrictions of ICA

The standard formulation of ICA requires at least as many
sensors as sources. Thus, in this paper, we assume that the
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Fig. 1. Principle of ICA

number of sources is equal to the number of sensors and we
ignore additive noise. In the instantaneous mixture case, the
sources are not observed directly but as a linear combination
such that :

xi(t) =
N∑

j=1

aijsj(t), (1)

where s are source signals, x are observed signals and
A = [ai,j ] is an unknown full rank mixing matrix.

Figure 1 shows the principle of ICA. In practice, the
goal of ICA is to find the inverse of A, which is the unmix-
ing matrix W = A−1. To estimate W , we have to make
certain assumptions and impose some restrictions [2] : the
individual components si(t) are assumed to be statistically
independent over the observation time and the individual
components must have non-Gaussian distributions. In com-
parison to previous work, the novelty of our approach re-
sides in the preprocessing implementation before the source
separation process in to : i) relax the previous restrictions
by increasing the non-Gaussianity that is a pre-requirement
for ICA, ii) initiate a preliminary separation by decreasing
the mutual information between the resultant signals from
the preprocessing.

The preprocessing transforms the observed signals to
find an adequate representation where the signals distrib-
utions are non-Gaussian. For this, the wavelet transform
is used to emphasize the non-Gaussian nature of the ob-
served signals. Once the inverse matrix W is found with
the wavelet packets based ICA then, the separation is per-
formed in the time domain.
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Fig. 2. Overview of the proposed system
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Fig. 3. The tree of wavelet packets decomposition. Each
doublet (j,k) represents the depth (j) and the number (k) of
the nodes

Section 2 describes the proposed method. Results are
given in section 3. Finally, section 4 is the conclusion.

2. PROPOSED METHOD

The proposed system is presented in Figure 2. It comprises
two modules shown in dotted boxes. The first module (pre-
processing) extracts appropriate signals from the observed
signals to facilitate the source separation. For this, the ob-
served signals are projected on suitable bases, more pre-
cisely on one of the wavelet packets bases. The second
module (separation) performs the source separation using
standard ICA [1]. The input of this module is the extracted
signals from module 1 and the observed signals.

2.1. Preprocessing module

2.1.1. Description

In module 1 (figure 2) the observed signals are decomposed
with a generalization of Mallat’s algorithm [5]. This al-
gorithm is known as the wavelet packets decomposition. It
offers interesting properties : i) the wavelet packets coeffi-
cients emphasize the non-Gaussian distribution, ii) the co-
efficients produced by the wavelet packets decomposition
are sparse, iii) the dependencies between the wavelet co-
efficients of different resolutions are very weak. We use
Daubechies wavelets with a tree of wavelet packets decom-
position as shown in figure 3. In this case, the wavelet de-
composition level is equal to 3.

The wavelet packets decomposition of the observed sig-
nals leads to many possible choices of bases (see figure 3).

Each base can be considered as an appropriate signal. Thus,
it is necessary to find the best basis. The notion of the
best basis of wavelet packets was introduced by Coifman
et al. [6]. The basis selection can be done by using Shan-
non entropy criterion. In our case, we select only one node
(instead complete basis) for which the information is con-
centrated. The selection of this node is done as follows:

i) decompose the observed signals into wavelet packets;

ii) compute the entropy value at each node;

iii) select the node that has the lowest entropy.

The Shannon entropy is defined for each node (j, k) as :

H(j, k) = −
∑

pi log(pi), (2)

with pi =
||Cj,k(i)||2

||x||2 , where Cj,k are the wavelet coeffi-
cients and x is the observed signal.

2.1.2. Impact of preprocessing on non-Gaussianity

From the wavelet packets decomposition properties, only
a few wavelet coefficients of the selected node are signifi-
cant. Thus, the histogram of these coefficients will have a
large peak around zero. Figure 4 shows a typical histogram
example of the observed signal and its wavelet packets co-
efficients. The observed signal is a mixture of two distinct
sources (male speech and music) with the mixing matrix
A = [2 1 ;1 1]. We note in figure 4 that the observed signal
distribution is more Gaussian than that of the coefficients.
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Fig. 4. Normalized histogram of (a) observed signal
(normalizedKurtosis = 0.22), and (b) wavelet coeffi-
cients from the selected node (normalizedKurtosis =
22.85)

To find and quantify the non-Gaussian signature present
in the signals, one can use statistical tests. We use the nor-
malized fourth order moment (Kurtosis) of the distribution
that equals zero for a Gaussian distribution. The normalized
Kurtosis value of the wavelet coefficients is significantly
larger than the normalized Kurtosis of the observed signals
(figure 4). Thus, the coefficients issued from the wavelet
packets decomposition decrease the Gaussian nature of the
distributions. Consequently, during the application of ICA,
we will have a significant gain. Let us recall that one of the
ICA approaches is the exploitation of non-Gaussianity.
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2.1.3. Impact of preprocessing on mutual information

The minimization of mutual information is used as a crite-
rion to estimate the sources in some ICA algorithms. Thus,
with the preprocessing module, we initiate the preliminary
separation because the preprocessing minimizes the mutual
information between the outputs. To confirm this, we con-
ducted some experiments with different sources and differ-
ent mixing matrices. In the case of two sources and two
sensors, we computed the mutual information between the
signals of the two channels. The mutual information value
between the two channels strongly decreases after the pre-
processing module compared with the one before preprocess-
ing. For example, if the observed signals are issued from
two sources (male speech and music) with the mixing ma-
trix A = [2 1 ;1 1], the mutual information between the
sources (s1, s2), the observed signals (x1, x2) and the se-
lected wavelet packets coefficients (cx1

, cx2
) is respectively

0.01, 0.65 and 0.12.
A more obvious illustration of the proposed preprocess-

ing advantage is shown in figure 5. This Figure shows the
joint distribution of the observed mixtures (x1, x2) and the
joint distribution of the wavelet coefficients issued from the
selected node. The observed signals are generated by two
distinct sources (speech signal and music signal). We can
see on the wavelet coefficients joint distribution (figure 5-
b) the main lines which can be regarded as a representation
of each source separately. This is in clear contrast with the
joint distribution of the observed signals (figure 5-a).
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Fig. 5. The joint distribution of (a) observed signals, and
(b) wavelet coefficients from the selected node

2.2. Separation Module

Module 2 (figure 2) consists in determining the mixing ma-
trix. The aim is to obtain the inverse of the mixing ma-
trix A−1 using the independent component analysis (ICA).
The ICA algorithm inputs are the wavelet coefficients from
the node that minimizing the entropy. Thus, we replace the
mixtures x1 and x2 by the wavelet coefficients. The sec-
ond module output is the inverse mixing matrix. Finally the
estimated sources are obtained by taking into account the
original observations.

3. RESULTS AND DISCUSSION

3.1. Simulation results

To test the performance of the source separation algorithm
described in section 2, the proposed method and the Fas-
tICA algorithm [7] have been applied to a synthetic signal.
Specifically, the first source is a chirp sound and the second
source is a sinusoid. Figure 6 shows the synthetic sources
and the observed signals resulting from the mixtures of both
synthetic sources with the mixing matrix A = [2 5 ;6 9].
Similar results are obtained with different mixing matrices
on those same signals.

The results of the separation are shown in figure 7. In
this particular case where the simulated signal and their fre-
quencies were selected arbitrarily, the ICA was not able to
separate the two sources. On the other hand, the proposed
method allowed a good synthetic sources separation (see
figure 7).

3.2. Experimental results

We have also tested the performance of the two methods
on multi-channel (two sources and two sensors) mixtures
of different sound types and different mixing matrices. We
chose recorded audio signals that represent real life situa-
tions like mixture of musical instruments, speech and music
from the RWC music database [8]. For the experiment of
this paper, we used four different

mixtures with the same mixing matrix A = [2 1 ;1 1].
An evaluation of the quality of the source separation al-
gorithms was made using different evaluation criteria. We
used the subjective criterion called perceptual evaluation of
audio quality (PEAQ) [9] and the objective criterion called
the log spectral distortion (LSD) which is defined as :

LSD =
1

L

L−1∑

l=0

[
1

K

K−1∑

k=0

(20log10
|Sk,l + ε|∣∣∣Ŝk,l + ε

∣∣∣
)2]

1

2 , (3)

where L is the number of frames, K is the number of
frequency bins, and ε is meant to prevent extreme values.

Table 1 summarizes the evaluations results obtained from
the two source separation algorithms. In the majority of
cases, we can see that the proposed method gives the best
results, especially when the two sources have the same char-
acteristics and come from the same musical instrument. For
example with the PEAQ, the subjective impairment scale
varies between −4 and 0.2 with the same parameter val-
ues than in [9]. Grade −4 corresponds to a very annoying
impairment and grade 0.2 corresponds to an imperceptible
impairment. Informal listening tests confirm these PEAQ
values, i.e. that the separated sounds are perceptually very
close to the original sounds prior to mixing when using the
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Fig. 6. The simulated sources. (a) and (b) sources s1, s2.
(c) and (d) mixtures x1, x2
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Fig. 7. The estimated sources ŝ1, ŝ2 obtained using the two
methods. (a) and (b) with conventional ICA [1]. (c) and (d)
with the proposed method

proposed algorithm, but that the quality using the FastICA
alone is very poor in the case of flute and percussion instru-
ments.

4. CONCLUSION

We proposed to combine ICA with the wavelet packets de-
composition to separate two sources. We used the wavelet
packets decomposition to increase the non-Gaussian nature
of the signals to be further processed by ICA. Once the in-
verse matrix W is found with the wavelet packets based
ICA, it is used to perform the separation in the time domain.
The proposed method has been applied to audio signals and
an evaluation (objective and subjective) of the separation
quality has been made. In the instantaneous mixture case,
the current results of the separation are promising. How-
ever, more investigations are then needed to separate the
convolutive mixtures with the proposed method.
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Sources PEAQ LSD
FastICA PM FastICA PM

Male speech -0.1 0.0 0.9 0.1
Music 0.1 0.2 0.6 0.5
Castanets instrument 0.0 -0.9 0.2 0.3
Gong instrument -2.7 0.1 0.6 0.1
Flute1 -3.5 0.0 6.1 0.5
Flute2 -3.5 0.1 4.9 0.3
Male speech -0.3 0.1 0.4 0.2
Female speech -1.6 -1.6 2.4 2.3

Table 1. Comparison of the obtained results with FastICA
and proposed method (PM)
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