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ABSTRACT

We introduce an algorithm for blind source extraction (BSE)

of independent sources in the presence of noise, without the

need for initial prewhitening, for which the normalised kur-

tosis is used within the cost function. Unlike the previously

proposed methods designed for noise-free mixtures, which

is not realistic in practical applications, we address BSE

for noisy mixtures and propose a novel cost function which

caters for the effects of noise. The proposed method is jus-

tified by rigorous analysis and supported by simulations.

1. INTRODUCTION

For blind source separation, solutions based on different

measurements of non-Gaussianity have been well established

in the past decade [1, 2]. One of them is the kurtosis-based

sequential blind source extraction (BSE) algorithm [3, 4, 5]

designed for independent sources. There are two kinds of

cost functions within this framework. One is based on the

direct minimisation/maximisation of the kurtosis, which is

meaningful only if the variance of the extracted source sig-

nal is bounded. This can be achieved by preprocessing of

the data in the form of prewhitening and normalisation of

the update of the demixing vector. Another kind of cost

function is based on the normalised kurtosis [4], the ad-

vantage of which is that, we do not need to perform the

otherwise required prewhitening and the normalisation op-

eration, which makes this approach suitable for online ap-

plications.

A vast majority of the previous work in the area of blind

source separation has relied on the underlying assumption

of no additive noise. As for the kurtosis-related BSE meth-

ods, although the case with noisy measurements has been

discussed when using kurtosis as a cost function [1], such

an approach has not been introduced for the normalised

kurtosis case. There is an important difference between the

kurtosis and normalised kurtosis based methods. When we

use kurtosis as a cost function, the effect of Gaussian noise

can be removed in the prewhitening stage, however, for the

normalised kurtosis case, we need to consider the effect of

noise within the cost function, which is fundamentally dif-

ferent.

To that cause, we propose a new cost function and de-

rive the corresponding adaptive algorithm for the extrac-

tion of independent sources from their noisy mixtures. A

detailed proof of the existence of the solution for the nor-

malised kurtosis method in the context of noisy measure-

ments is also provided.

This paper is organized as follows. In Section 2, with

an analysis of the normalised kurtosis in the case of noisy

measurements, we provide the new cost function which ac-

counts for the effect of noise, followed by the detailed proof.

An adaptive algorithm derived by maximizing the cost func-

tion is given in Section 3. Simulation results are given in

Section 4 and conclusions drawn in Section 5.

2. THE PROPOSED COST FUNCTION

The vector of the observed mixtures x[n] can be expressed

as

x[n] = As[n] + v[n], (1)
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where v[n] is the M ×1 noise vector, A is the M×L mixing

matrix and s[n] denotes the L × 1 zero-mean source signal

vector, given by

s[n] = [s0[n] s1[n] · · · sL−1[n]]T

x[n] = [x0[n] x1[n] · · · xM−1[n]]T

[A]m,l = am,l, m = 0, . . . , M − 1, l = 0, . . . , L − 1.(2)

In this scenario, we have M sensors and L sources, and

assume that the noise is i.i.d. white Gaussian and indepen-

dent of the source signals.

To extract one of the independent sources, a demixing

vector w is applied to x[n] to give the extracted signal y[n]

y[n] = wT x[n] = gT s[n] + wT v[n] , (3)

where

gT = wT A = [g0 g1 · · · gL−1] (4)

is the global demixing vector.

Recall that, by definition, the kurtosis of y[n] is given

by

kt(y) = E{y4} − 3(E{y2})2 . (5)

As the kurtosis of a Gaussian variable is zero, kurtosis kt(y)

remains unaltered in the presence of additive white Gaus-

sian noise, and can be expressed as

kt(y) = ΣL−1
l=0 g4

l kt(sl) = g̃T Ksg̃ , (6)

where

g̃T = [g2
0 g2

1 · · · g2
L−1]

Ks = diag{kt(s0) kt(s1) · · · kt(sL−1)} . (7)

The normalised kurtosis is obtained when kurtosis kt(y) is

divided by the square of the variance E{y2}, and is given

by

(E{y2})2 = (gT Rsg + wT Rvw)2 , (8)

where Rs = E{s[n]sT [n]} is the diagonal correlation matrix

of the sources and Rv = E{v[n]vT [n]} is the correlation

matrix of the noise. As the differences in the diagonal ele-

ments of Rs can be absorbed into the mixing matrix A, we

can always assume Rs = I. Thus, equation (8) simplifies

into

(E{y2})2 = (gT g + wT Rvw)2 . (9)

Notice that due to the noise term in (E{y2})2, we can-

not use the normalised kurtosis as the cost function in the

same way as in [4]. Instead, we need to remove this noise

term before performing kurtosis normalisation.

If the signal to be extracted has a positive kurtosis, we

perform maximization of the modified cost function

J(w) =
kt(y)

(E{y2} − wT Rvw)2

=
g̃T Ksg̃

(gT g)2
= ĝT Ksĝ , (10)

where

ĝT =
1

g2
0 + g2

1 + · · · + g2
L−1

[g2
0 g2

1 · · · g2
L−1] . (11)

Otherwise, if the kurtosis of the signal we want to ex-

tract is negative, we can simply change the sign of J(w),

which will be absorbed eventually into the kurtosis ma-

trix Ks. In this case, the new cost function J(w) becomes

ĝT (−Ks)ĝ, and in the modified kurtosis matrix K̂s = −Ks,

the diagonal element corresponding to the interesting signal

remains positive. Therefore, without loss of generality, we

shall only consider the case with the positive kurtosis.

Suppose the source signal with the largest kurtosis is

the k − th source signal sk[n]. From (11), we have

‖ ĝ ‖2
2= ĝT ĝ ≤ 1 , (12)

where ‖ ĝ ‖2
2= 1 only if one of the gl, l = 0, . . . , L − 1 is

nonzero and the remaining ones are zero.

Consider now the following maximization problem for a

fixed positive value of c ≤ 1 and a general vector ḡ

max
ḡ

Ĵ(w) subject to ḡT ḡ = c2 , (13)

where

Ĵ(w) = ḡT Ksḡ . (14)

It can be proved that in general the solution to this problem

is a vector ḡopt with only one nonzero element strictly equal

to ±c at the position corresponding to the largest diagonal

element (kurtosis) kt(sk) of the matrix Ks [2]. With ḡ =

ḡopt, we have Ĵ(w) = ḡT Ksḡ = c2kt(sk). As c increases,

Ĵ(w) will increase correspondingly, and when c = 1, we

have the maximum value Ĵ(w) = kt(sk).

Then, the maximization problem given by

max
ĝ

ĝT Ksĝ (15)

is obviously equivalent to searching for the maximum value

of Ĵ(w) in a subspace of ḡ for c ≤ 1 defined in (11). Observe

that the maximum value of J(w) = ĝT Ksĝ cannot be larger

than that of Ĵ(w) for c ≤ 1. Furthermore, the maximum

value of J(w) is equal to that of Ĵ(w) for c ≤ 1 only if we

can find such a ĝ that both the requirements ĝT ĝ = 1 and

ĝ = ḡopt |c=1 can be satisfied simultaneously. In fact, from

(11), we can see that, when g2
k = α2 (α > 0) and gl = 0, for

all l �= k, the norm of ĝ is exactly equal to unity and also

we have ĝ = ḡopt |c=1 satisfied. Moreover, this is also the

only choice which satisfies both of the requirements.

When ĝ = ḡopt |c=1, the corresponding g will be a vec-

tor gopt with only one nonzero element gk = ±α. In this

case, y[n] = ±αsk[n], that is, the desired signal has been

extracted. Since we are actually maximizing J(w) with re-

spect to w, instead of ĝ, to validate the approach, we need

to prove that there exists a wopt which results in gopt.
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From the formulation g = AT w, when A is of full rank

and the number of mixtures M is larger or equal to the num-

ber of sources L, wopt can be obtained using the pseudo-

inverse of AT as

wopt = A(AT A)
−1

gopt . (16)

Since the possible maximum value of J(w) is reached

only when g = gopt, as long as there exists such a w = wopt

so that we have g = gopt, we can state that the maximiza-

tion of J(w) with respect to w will result in a successful

extraction of the source signal with the maximum kurtosis.

3. THE PROPOSED ADAPTIVE ALGORITHM

To derive an adaptive BSE algorithm based on (10), we

need the knowledge of the correlation matrix Rv, which is

normally unavailable. For our analysis, in many cases it is

reasonable to adopt Rv = σ2I. When M > L, the parame-

ter σ2 represents the smallest eigenvalue of the correlation

matrix Rx of the observed signals. A subspace method or

an adaptive principal component analysis algorithm can be

used for its estimation [1, 6]. For M = L, it is difficult

to estimate σ, unless we have some additional knowledge

about the system, for example, the period when there are

no source signals present, so that the correlation matrix of

the noise can be calculated using those measurements.

For convenience, after each update, we perform a nor-

malisation of the demixing vector w, given by

w[n] ← w[n]/
p

wT [n]w[n] . (17)

Thus, the cost function (10) changes into

J(w) =
E{y4} − 3(E{y2})2

(E{y2} − σ2)2
, (18)

To derive the updates of the demixing vector w, we apply

the standard gradient descent method to J(w) and obtain

∇wJ =
4

(E{y2} − σ2)3
`
(E{y2} − σ2)(E{y3x}

+3σ2E{yx}) − (E{y4} − 3σ4)E{yx}´ . (19)

After some standard statistical approximations, we arrive

at the following update equation

w[n + 1] = w[n] + µφ(y[n])x[n] , (20)

where µ is the stepsize and

φ(y[n]) =
βy[n]

(m2(y) − σ2)3
ˆ
(m2(y) − σ2)y2[n]

+3σ2m2(y) − m4(y))
˜

. (21)

The moments mq(y), q = 2, 4 are estimated recursively by

mq(y)[n] = (1 − λ)mq(y)[n − 1] + λ|y[n]|q , (22)
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Fig. 1: The three source signals with binary (s0), uniform

(s1) and Gaussian (s2) distributions.

where λ denotes the forgetting factor and β = 1 for source

extraction with positive kurtosis and β = −1 for negative

kurtosis.

Note that in the noise-free case (σ2 = 0), the expression

(21) becomes

φ(y[n]) =
βy[n]

m3
2(y)

`
m2(y)y2[n] − m4(y)

´
, (23)

which is exactly the algorithm proposed in [4] as desired,

except for the constant 1
m2

2(y)
, which can be absorbed into

the stepsize.

4. SIMULATIONS AND RESULTS

The simulations were based on three source signals with the

binary, uniform and Gaussian distribution, respectively, as

shown in Fig. 1. Their corresponding kurtosis values were

−1.9978, −1.2237, and 0.0151. Since the two non-Gaussian

signals have negative kurtosis values, we have β = −1, and

by minimizing the kurtosis of the extracted signal, in theory,

we will extract signal s0, as it has the smallest kurtosis

value.

The 4 × 3 mixing matrix was randomly generated and

is given by

A =

2
6664

0.9575 0.5207 0.9248

−0.9356 −0.4131 0.6338

−0.4264 −0.9840 0.6787

0.5103 0.3774 −0.1707

3
7775 . (24)

To measure the quality of BSE for the presented algo-
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Fig. 2: The performance index for the proposed algorithm.
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Fig. 3: The extracted source signal.

rithm, we employ the performance index (PI) defined as [2]

PI = 10 log10

 
1

L − 1
(

L−1X
l=0

g2
l

max{g2
0 , g2

1 , . . . , g2
L−1}

− 1)

!
.

(25)

The smaller the value of PI, the better the quality of ex-

traction.

The additive noise was white Gaussian with σ = 0.1.

As we have one more mixture than the number of sources,

we use this degree of freedom to estimate the noise vari-

ance σ2. During the adaptation, the forgetting factor was

λ = 0.02 and the stepsize µ = 0.004. As shown in Fig. 2,

the performance index reached a level of almost −40 dB,

indicating a successful extraction. The waveform of the ex-

tracted signal is given in Fig. 3, which is actually the first

source signal except for the effect of noise.

Next, the steady-state PI value of the proposed algo-

rithm was compared to that of the existing noise-free algo-

rithm given in (23) for different signal-to-noise ratios (SNRs)

and the results are shown in Table. 1. Since the proposed al-

gorithm takes the same form as the existing noise-free one

for σ = 0, they have a very similar performance for very

low noise levels, as shown in Table. 1. When the noise level

increases, the proposed approach outperforms the existing

one. For very high noise levels, the performance difference

between the two algorithms becomes smaller and effectively

they both fail to extract the source signals when the signal

and noise power are identical (SNR = 0.0 dB).

Tab. 1: The steady-state PI value of the two algorithms

with respect to different SNRs:

SNRs [dB] proposed alg. [dB] existing alg. [dB]

35.2 -51.7 -51.2

28.3 -44.6 -43.4

25.0 -40.9 -39.3

21.4 -37.2 -34.9

17.9 -33.5 -30.4

14.5 -30.0 -25.9

11.0 -26.0 -21.4

7.6 -22.1 -17.4

4.1 -17.5 -14.0

0.0 -10.4 -10.6

5. CONCLUSIONS

We have proposed a novel blind source extraction algorithm

for noisy measurements based on the maximisation/minimi-

sation of the normalised kurtosis. The effect of noise is re-

moved from the previously proposed cost function provided

we know the correlation matrix of the noise. A proof of this

method is provided and the derived adaptive algorithm is

verified by simulations.
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