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ABSTRACT

Though seemingly effortless, our auditory system engages in
complex processes and transformations which enable us to
segregate speech and other sounds in cocktail party settings.
This paper presents a computational approach to modelling
monaural auditory scene analysis, where we attempt to ac-
count for perceptual and neuronal findings of receptive field
selectivity and adaptation in the auditory cortex. The model
introduces a biologically-inspired scheme of dynamic segre-
gation of auditory streams, based on unsupervised clustering
and the statistical theory of Kalman prediction. Our method
demonstrates its ability to emulate known percepts reported
by human subjects in auditory streaming and sound organiza-
tion tests, and yields successful results in segregating speech
from concurrent speaker and music interferences.

1. INTRODUCTION

The ability of our brain to identify and follow conversations
in the midst of the most severe distortions is a testament to
the ingenuity of the auditory system’s design as a decoder.
We are equipped with an amazing computational tool that is
both competent and quite reliable in perceiving sounds and
robustly segregating speakers in cluttered and noisy environ-
ments. The perceptual capabilities of the auditory system rely
on various cognitive principles allowing us to attend to certain
aspects of the acoustic information in the auditory scene.

From a computational perspective, development of stream
segregation systems is invaluable for numerous engineering
applications such as hearing prostheses, automatic speech re-
cognition, and object tracking in sensor networks. Many bio-
logically inspired approaches, including neural networks, have
been developed in the last two decades to perform intelligent
processing of complex sound mixtures [1]. Despite their valu-
able contributions, a major shortfall of most existing algo-
rithms is the absence of information integration strategies to
consolidate features extracted from the acoustic signal with
contextual facts from the environment; hence hindering their
applicability to general tasks [1]. On the other end of the
spectrum, numerous studies have attempted to solve the prob-
lem of sound separation from a strictly engineering perspec-
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tive (e.g. blind source separation, BBS). Systems built in this
spirit are, however, limited by their own mathematical con-
struction or model-based approaches. Hence, stream segre-
gation continues to be a challenge for strictly statistical tech-
niques like BBS systems, particularly in the monaural case,
in absence of multi-sensor data.

In this paper, we propose a model that is largely inspired
by the perceptual and neuronal findings of auditory stream
segregation. The proposed system, described in section 3
presents a computational approach to monaural stream seg-
regation based on unsupervised clustering techniques and the
statistical theory of Kalman prediction. This approach yields
a robust computational scheme for speaker separation, as val-
idated by the results in section 4.

2. PERCEPTUAL PRINCIPLES FOR AUDITORY
SCENE ANALYSIS

Our physiological knowledge of neural properties, particu-
larly in the primary auditory cortex (A1), indicates that cor-
tical neurons exhibit elaborate selectivities to spectral shape,
symmetry and dynamics of sound [2]. This intricate map-
ping of acoustic waveforms into a multidimensional space,
along with the known plastic and adaptive nature of cortical
responses, suggest a role of the cortical circuitry in repre-
senting sounds in terms of auditory objects. Additionally, the
time scales of cortical processing appears to be tightly linked
to the temporal dynamics of stream formation and auditory
grouping. The cortical time constants correspond well to the
dynamics of the vocal tract in speech, the rates of musical
melody and timbre, as well as the buildup and preservation of
streaming [2].

Psychoacoustically, numerous studies have attempted to
reveal the acoustic cues used by the auditory system to deter-
mine whether sound components are to be fused together into
a single perceptual stream or segregate into separate streams.
Various studies have identified frequency separation, harmonic-
ity, onset/offset synchrony, AM and FM modulations, sound
timbre and spatial location as the most prominent candidates
used as grouping cues in auditory streaming [3]. It is however
becoming more evident that any sufficiently salient perceptual
difference along any auditory dimension may lead to stream
segregation.
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Based on both psychophysical and psychacoustical evi-
dence, we formalize our focal hypothesis that streaming of a
complex sound from a cluttered acoustic environment can be
quantitatively predicted based on its segregation in a higher
multidimensional cortical representation that explicitly inclu-
des features related to spectral shape and temporal dynamics
of the signal.

3. ALGORITHM

In this work, we propose an algorithm that investigates the
stated hypothesis by mapping sound waveforms into a multi-
dimensional cortical representation. The segregation of soun-
ds into multiple objects follows the principles dictated by per-
ceptual grouping cues, as described in section 3.2. The inte-
gration of these features is then performed using a Kalman-
based estimation discussed in section 3.3.

3.1. Peripheral Auditory Processing

Sound signals undergo a series of transformations in the early
auditory system, and are converted from a one-dimensional
pressure time waveform to a two-dimensional pattern of neural
activity distributed along the tonotopic (roughly logarithmic
frequency) axis. This two-dimensional pattern, called audi-
tory spectrogram, represents an enhanced and noise-robust
estimate of the Fourier spectrogram. We simulate this trans-
formation through a series of stages involving a filter-bank
decomposition and sharpening of the temporal and spectral
features as described in details in [4] and illustrated in Fig. 1.
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Fig. 1. Peripheral processing and primitive cues extraction.

3.2. Simultaneous Segregation

3.2.1. Primitive Cues

The auditory spectrogram reveals the time-frequency patterns
in the auditory scene, hence setting the ground for a spectral
analysis of the various acoustic primitive features. This stage
focuses on analyzing sound at every cross section in time, and
extracts two important cues (when available):

(1) Pitch extraction, which identifies harmonic structures
at every temporal cross-section. This stage does not track any
frequency trajectories, but works on identifying which fre-
quency channels stand in harmonic relationship to each other

at every time instant. Our pitch extraction algorithm is based
on a template matching model, similar to that proposed by
Goldstein [5]. The model compares incoming spectra against
an array of harmonic patterns at different fundamental fre-
quencies (F0), and builds a distribution of pitches based on
the matching to the different templates. A threshold is then
set to choose the values of F0 with the largest evidence weight
at every instant in time;

(2) Onset Estimation: Along with pitch estimates, onset
synchrony is a very effective and robust cue for segregating
acoustic components. We employ a simple derivation via tem-
poral differentiation to boost the detection of transient energy
in the signal. We then proceed to a spectral integration across
frequency bands, followed by an energy threshold. Synchro-
nous frequency channels that are activated together emerge as
onset spectral segments and tend to coincide with a common
sound source.

3.2.2. Multi-scale Analysis

Relying on the premise that spectral shape is an effective phys-
ical correlate of the percept of timbre, we perform a multi-
scale analysis on each extracted spectral pattern (from pitch
and onset estimates). Inspired from findings of cortical spec-
tral analysis, we employ a multi-scale model based on wavelet
decomposition [4]. The local and global spectral shapes in
the acoustic patterns are captured via a bank of spectral mod-
ulation filters tuned at different scales (spanning the range
1/8−8 cycles/octave). This spectral decomposition offers an
insight into the timbre components of each acoustic features
extracted from the input, and accentuates key sound attributes
used to segregate different streams (e.g., timbre features such
as formant bandwidths and overall spectral tilts).

3.3. Sequential Integration

While perceptual cues of harmonicity, onset synchrony and
timbre can readily yield clean instantaneous ”looks” of each
speaker or sound source in a mixture, the challenging phase of
the analysis is to organize these features together to yield per-
ceptually meaningful streams. Here, we propose to adhere to
an approach that does not rely on any dictionaries of linguis-
tic knowledge or databases of familiar sounds, but rather to
take advantage of the statistical regularities of sound patterns
emanating from a common source. This part of the algorithm
proceeds in three steps:

3.3.1. Forward projection

In this stage, we explore the correspondence between slow
cortical dynamics and streaming time constants. We model
each stream (or sound source) as a bank of modulation selec-
tive filters, tuned to temporal rates ranging between 2-40 Hz
(Fig. 2). The behavior of these rate filters is governed by their
internal dynamics, where each cortical unit integrates sound
inputs according to its own time constant.
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Fig. 2. Diagram of sequential segregation.

Computationally, our current implementation of the algo-
rithm segregates sound mixtures into two streams, A and B
(e.g. foreground vs. background). The input going to stream
A or B is decided by the clustering module which we review
in section 3.3.3. Based on this clustering, once sound feature
Iα is identified as belonging to stream A for example, it gets
processed through the bank of rate filters, where each modu-
lation selective unit yields an output Y given by:

Yc(t, f,Ω, ωc, θc) = Iα(t, f,Ω) ∗t h
IRT

(t; ωc, θc) (1)

where t stands for time, f for frequency, Ω for spectral scale
(described in section 3.2.2), ω for temporal rate and θ for
phase. The cortical integration is captured by the a tempo-
ral gamma function ht(t) = t3e−4tcos(2πt). This mother
wavelet is scaled and shifted at different rates {ωc}, yielding
ht(t;ω). By sinusoidally interpolating the symmetric seed
function ht(.) and its Hilbert transform, we obtain a direction-
ally selective filter hIRT (t; ωc, θc) determined by modulation
parameter ωc and characteristic phase θc [4].

Effectively, we implement the array of FIR cortical filters
{h

IRT
(.)} as IIR filters whose dynamics are defined by coeffi-

cients {ai} and {bi} that capture their tuning and bandwidths
[6]. This implementation allows us to project the sound fea-
tures one instant at a time, while maintaining a memory of re-
cently integrated sound features from previous inputs and out-
puts in state (or latent) variables Z . These memory elements
are introduced by converting the IIR difference equation into
state-space form [6], and correspond to delay registers in a
direct form II implementation of the IIR equation.

3.3.2. Estimation (feedback) stage

The next stage consists of an estimation problem, where each
stream aims to predict its expected input at time t + 1, based
on the accumulated statistical information in that stream up to
time t. We define the optimization function for this estimation
as a maximization of the model’s posterior probability given
the recently integrated inputs. This cost function is given in
Eq. 2, and expanded using Bayes rule.

J = maxP ( �Z|I)
= min

∑
i

[
− log P (I|Zi

) − log P (Zi

)
] (2)

The solution of Eq. 2 yields an optimal estimate of the
latent variables �Z(t+1) and hence can estimate the expected
inputs Î(t + 1) for streams A and B. In order to solve Eq. 2,
we use the state space form defined in the forward stage but
flipping the roles of the input and output vectors (since our
goal is to predict the input). The output-input relationship is
now defined as:

Î(t) = AZ(t) + η(t)
Z(t + 1) = BZ(t) + CY (t) + ν(t)

(3)

where the matrices A, B and C are derived from the “in-
verse” rate filter coefficients {ai, bi} following a canonical
state-space derivation described in [6]. η(t) and ν(t) are two
noise terms introduced to allow for variability in the estima-
tion. Assuming a Gaussian distribution for the noise elements
η and ν, we can replace the probability functions in Eq. 2 with
the normal distribution. Hence, we can derive the optimal so-
lution Ẑ(t + 1) which is in fact a Kalman estimator [6]. This
Kalman estimate Ẑ directly yields the predicted input Î(t+1)
per rate filter per stream (Eq. 3), which we then sum across
rate filters to obtain one estimated input prediction Î

A

(t + 1)
and Î

B

(t + 1) for streams A and B, respectively.

3.3.3. Clustering stage

The outcome of the estimation stage is a predicted pattern
Î

A,B

(t + 1) for streams A and B (Fig. 2). The next stage rec-
onciles the predicted input from each stream with the actual
incoming inputs extracted from the sound mixture at every
time instant. We use a mean-square error (MSE) criterion to
cluster the input patterns into belonging to streams A or B.
Based on this grouping, we decide which input patterns Iα

and Iβ get projected to streams A and B respectively, and
hence follow the forward loop described in section 3.3.1.

4. SIMULATION RESULTS

The model was tested on several classic stream segregation
conditions to demonstrate its ability to emulate known per-
cepts as reported by human subjects [3]. Figure 4 illustrates
examples of the model’s results.

Alternating Tone Sequences: In the first row of Fig. 3, we
show the results of the classic alternating ABA tone sequence,
with a presentation rate of 4Hz for the A-tone and B-tone [3].
The middle and right panels of this first row show the sum of
outputs of the different rate filters in each cluster. They reflect
what would be considered the ”perceived auditory streams”.

Crossing Trajectories: The theory of ”crossing trajecto-
ries” examines the segregation of rising and falling tone se-
quences that ”cross” at a certain point in time. Listeners al-
ways report hearing a bouncing pattern when the sound ele-
ments are individual tones, and it is very hard for subjects to
follow an entire rising or falling sequence. Such effect is also
exhibited by the model in the second row of Fig. 3.
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Fig. 3. Stream segregation results.

Speech with Interference: The third and fourth rows of
Fig. 3 show the model’s results in separating a speech utter-
ance from an interfering second voice (two male voices), or
a masking musical melody (a female voice and a flute). The
model is successful in segregating between the two interfer-
ing streams, primarily using their timbre differences as well
as pitch mismatches.

We ran a more through test of speaker segregation us-
ing the TIMIT database. These tests consisted of mixtures of
pairs of utterances from: male-female, male-male and female-
female speakers. We also simulated mixtures of female speak-
ers with male voices whose sentences have been modified so
that the pitch matches the female range, but without altering
the spectral ratios of his formant energies. Each one of these
tests was performed on 50 different pairs of different male
and female speakers and utterances from the TIMIT data-
base, where sentences range between 2 and 4 seconds long.
The success of the speaker segregation was quantified by cor-
relating the output of the cortical model for each cluster (or
stream) with the original ”clean” sentence, so as to assess the
similarity between the two. The 50 simulations yield average
correlations shown in the second column of Table 1.

In order to assess the performance of the model indepen-
dent of sources of error introduced by pitch estimation and
onset detection algorithms (of which there are many in the lit-
erature), we repeated the same tests but this time using pairs
of clean sentences from two different speakers. Each sentence
was analyzed separately through the pre-processing stages in
order to map the sound into a multi-scale representation. The
features extracted from each are then presented as a combined
array of sound patterns, with no reference to which speaker
they belong to. These unlabelled patterns are then clustered
using the adaptive learning model as before. In the absence
of any labelling of their sources, the only evidence that could
integrate the patterns of the same speaker in this case was the
regularity inherent in the pattern features. The resulting cor-
relation coefficients improved as shown in the third column

Mixture Original
Male-Female 0.82 ± 0.04 1
Male-Male 0.89 ± 0.05 0.98 ± 0.02

Female-Female 0.92 ± 0.04 0.95 ± 0.05
Female-Modified male 0.85 ± 0.05 1

Table 1. Results of speaker segregation.

of Table 1. These results are indicative of the potential power
of this computational model.

5. CONCLUSIONS AND FUTURE DIRECTIONS

The question of how the acoustic scene is parsed by the au-
ditory system into auditory objects and streams is one of the
most fundamental in perceptual science. In this work, we pre-
sented a model which operates by reconciling acoustic evi-
dence from the input signal (accentuating attributes such as
timbre features, e.g. formant bandwidths and overall spec-
tral tilts), and expectations of an internal representation of the
different perceptual streams in the environment.

We are currently working on various extensions of the
model (e.g. binaural scheme), as well as more thorough test-
ing with variations of speaker identity, gender and accents,
under different interference loudness levels. An important
future direction is the re-synthesis of the clustered streams.
The computational complexity of the model requires intricate
processes to revert the cortical representation of the segre-
gated streams into sound waveforms. On-going work on the
model is tackling this problem.

Given the promising results yielded by the current model,
it is an invaluable tool for exploring the neural basis of audi-
tory scene analysis. This work would lead to important ap-
plications in speech recognition front-ends as well as hear-
ing prosthesis systems, which are at the forefront of speech
technologies that could immensely profit from our growing
understanding of auditory perception in the brain.
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