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ABSTRACT
Complex maximization of nongaussianity (CMN) has been shown to

provide reliable separation of both circular and noncircular sources.

It is also shown that the algorithm converges to the principal com-

ponent of the source distribution when studied in the estimation di-

rection. In this paper, we study the local stability of the CMN al-

gorithm and determine the conditions under which local stability is

achieved by extending our previous work to all dimensions of the

weight vector. We use these conditions of stability to quantify con-

vergence performance for a number of complex nonlinear functions,

and present simulation results to demonstrate the effectiveness of

these functions.

1. INTRODUCTION

Complex nonlinear functions, i.e.,, functions that are C �→ C, are

shown to be highly effective in extracting higher order statistical in-

formation for achieving independent component analysis (ICA) [1].

In [4], they are used to implicitly generate the higher order statis-

tics for maximization of nongaussianity and to derive the complex

maximization of nongaussianity (CMN) algorithm. By examining

the stability of the algorithm in the direction of the estimated source,

the algorithm is shown to converge to the principal component of

the source distribution [4]. The stability of the algorithm, however,

depends on the behavior of the nonlinear function across all dimen-

sions. In this paper, we perform a complete second-order analysis

of the CMN algorithm across the entire weight vector and derive

expressions that explain the interaction between the nonlinearity and

the source statistics. We use the results of this analysis to define a sta-

bility measure which indicates how stable a nonlinearity is when the

sources are noncircular. We apply this measure to several complex

nonlinearities to quantify their performance and present simulation

results to support the theory.

2. COMPLEX ICA BY MAXIMIZATION OF
NONGAUSSIANITY

2.1. Complex preliminaries

A complex variable z is defined in terms of two real variables zR

and zI as z = zR + jzI . Statistics of a complex random vector

x = xR + jxI is defined by the joint probability density function

(pdf) px(xR,xI) provided that it exists. The expectation of a com-

plex random vector x is then given with respect to this pdf and is

written as

E{x} = E{xR} + jE{xI}.
The covariance matrix is written as

cov(x) = E{x − E{x}}E{x − E{x}}H

where H denotes Hermitian transform and the pseudocovariance

matrix is defined as pcov(x) = E{x − E{x}}E{x − E{x}}T , where

T denotes the transpose. These two quantities together define a com-

plex random vector, and the random vector is second-order circular

if pcov(x) = 0. A stronger definition of circularity is based on the

pdf of the complex random variable such that for any α, the pdf of z
and ejαz are the same [5].

2.2. Complex ICA

In ICA, the observed data z are typically expressed as a linear combi-

nation of latent variables such that z = As where s = [s1, . . . , sN ]T

is the column vector of latent sources, z = [z1, . . . , zN ]T is the col-

umn vector of observed mixtures, and matrix A is the N × N mix-

ing matrix. ICA then identifies the statistically independent sources

given the observed mixtures typically by estimating a matrix W so

that the source estimates become ŝ = Wz. We will assume without

loss of generality that the sources have zero mean and unit variance,

i.e., E{sks∗k} = 1.

2.3. CMN Algorithm

The CMN contrast function is written as

J(w) = E

����G(wHx)
���2
�

(1)

where G : C �→ C. This is similar to the complex variant of FastICA

algorithm introduced in [3], which we refer to as the c-FastICA al-

gorithm. In [3], nongaussianity is measured as

J(w) = E

�
G

����wHx
���2
��

(2)

and hence G : R �→ R. Comparing (1) and (2), it is clear that the

nonlinearity, G, in c-FastICA is invariant to the phase information

and hence assumes that the sources are circular. Incorporating phase

information using (1) is shown to significantly improve the perfor-

mance of the algorithm when the sources are noncircular [4].

The CMN algorithm requires a preliminary sphering or whiten-

ing transform V, resulting in

x = Vz = VAs = Âs

where E{xxH} = I. We estimate each source, k, separately by

finding a vector w such that

ŝk = wH
k x = wH

k Âs = qH
k s (3)

where qk = [0, . . . , qk, 0, . . .]T . Constraining the source estimates

such that E{ŝkŝ∗k} = 1, also constrains the weights to |w|2 = 1 due
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to the whitening transform. To calculate the optimal weight, i.e.,

wopt = arg max
||w||2=1

E{|G(wHx)|2}

we use gradient optimization followed by a normalization step, such

that

w = w + µν
∂J(w)

∂w∗ ; w =
w

||w||2
where µ is the learning rate and ν is a parameter based on the sign

of kurtosis as defined in [3].

3. STABILITY ANALYSIS

For the stability analysis, we use a second-order approximation of

the cost function around the stable point. The approximation is a

good one as long as the higher order terms of a Taylor series are

negligible and the Hessian exists or is not singular at the stable point.

For the cases where the second-order analysis fails to describe the

true behavior, we demonstrate the properties graphically in section

4.

We examine the stability of J(w) under the constraint ||w||2 = 1.

We use the orthogonal change of coordinates q = AHw, such that

J(q) = E{|G(qHs)|2} and ||q||2 = 1. The optimal solution is

given by qk = [0, . . . , qk, . . . , 0]T , where qk = ejθ , the condition

when w equals one of the rows of A−1. Without loss of generality,

we assume a solution at q1.

Previous analysis in [4], using a Maclaurin series expansion along

the direction of the estimated source, has shown that in the complex

plane of q1 = ejθ , the extrema are at

θ =
1

2
atan

�
−2E

�
(sR

1 )3sI
1 + (sI

1)
3sR

1

�
E ((sR

1 )4 − (sI
1)

4)

�
+

nπ

2
(4)

for integer n. This result shows us that as we traverse along the

unit circle in the complex plane of q1, there exist at least two min-

ima and two maxima at n = {0, 1, 2, 3}. If the sources are circular

however, all values of θ are stable, i.e., the gradient is zero with re-

spect to q1. In this paper, we extend the stability conditions of the

CMN algorithm to the other dimensions, namely q2, . . . , qN using a

second-order (Hessian) analysis. We show that the overall stability

is particularly important to show the interdependency of stability on

multiple noncircular sources, which is ignored when concentrating

only on the estimated source dimension, q1.

The major result of this section, derived in the Appendix based

on a second-order analysis, is that a local minimum (resp. maximum)

is achieved for a given source (i = 2, 3, . . .) when

γ(s1) ± |E{s2
i }β(s1)| > 0 (resp. < 0) (5)

where we have defined

γ(s1) = E
�

g(e−jθs1)g
∗(e−jθs1) − G(e−jθs1)g

∗(e−jθs1)s
∗
1e

jθ
�

and β(s1) = E{G∗(e−jθs1)g
′(e−jθs1)}, and used the notation

g(z) = dG(z)/dz and g′(z) = dg(z)/dz. For circular sources, the

expression reduces to

E {g(s1)g
∗(s1) − G(s1)g

∗(s1)s
∗
1}} > 0 (resp. < 0) (6)

which coincides with the result given in [3] assuming circularity that

implies E{s2
i } = 0.

Fig. 1. Scatter plot (real vs. imaginary) of the two sets of sources

used in the simulations.

We define a measure of performance, stability index (IS), by

solving for E{s2
i } in (5)

IS ≡
����γ(s1)

β(s1)

���� > |E{s2
i }|. (7)

Defining the stability index in this way provides: 1) a measure of the

second-order noncircularity that can be tolerated and 2) an indication

of the condition number (κ), ratio of the maximum eigenvalue to the

minimum, providing an indication of the expected convergence be-

havior. We can see from (7) that a high IS implies convergence for

sources with large second-order noncircularity, E{s2
i }. A large IS

also implies a condition number close to one, hence good conver-

gence behavior, as seen by substituting γ(s1) and β(s1) into (23)

κ ≡ γ(s1) + |E{s2
i }β(s1)|

γ(s1) − |E{s2
i }β(s1)| . (8)

As shown in the simulations section, some nonlinearities yield ro-

bust results with both sub and supergaussian sources, whereas some

might yield good results for only a certain type of input distributions.

4. NUMERICAL STUDY

In this section, we first show the performance of different nonlinear-

ities for G(z), asinh z, atanh z, tanh z, cosh z, acosh z, and z2 using

the measureIS . We use two sets of sources, a subgaussian and a su-

pergaussian set both shown in Figure 1. The subgaussian set includes

a uniform source and a correlated complex sinusoid and the super-

gaussian set includes Laplacian sources. The first source of each set

has an asymmetry ratio of 0.1, defined as the ratio of real to imagi-

nary standard deviation σR/σI and the second source includes cor-

related real and imaginary parts of same variance. The performance

measure used is the mean-squared error from the permutation matrix

Q = ÂHW as in [3] and is denoted by PI . Figure 2 shows the re-

sults of 200 runs for IS and PI for each nonlinearity. An asterisk (*)

indicates that data were not available due to convergence problems.

In Figure 2, we observe a direct correlation between the values for

IS and PI for each nonlinearity, a higher tolerance to second-order

noncircularity (measured by IS) leading to a better performance in-

dex PI . For example, z2 (kurtosis), still converges with subgaussian

sources but the value of IS explicitly tells us that E{s2
2} < IS . In

this example, if the second source made a small increase in noncir-

cularity, convergence may be compromised.

Figure 3 illustrates how convergence rate is affected by noncir-

cularity of subgaussian sources. Here we have number of iterations

to convergence as a function of the asymmetry measured by σR/σI .

As the sources become more noncircular (E{s2
k} increases), the con-

dition number κ increases. This increase in κ increases the conver-

gence rate as seen in the Figure, but affects asinh less then cosh. We

also observe this property in the IS value of asinh being greater then
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(a) IS vs. nonlinearity (b) PI vs. nonlinearity

Fig. 2. Numerical values of stability index, IS , and ICA performance

measure PI (’*’ indicates data were not available)

.

Fig. 3. Number of iterations to convergence for asinh and cosh non-

linearities as a function of σR/σI . Results are shown for the super-

gaussian source set.

that of cosh in Figure 2(a). As expected the IS value is an indicator

of κ and therfore the expected convergence behavior.

We next show a case when the second-order approximations fail

to accurately describe the optimization landscape around the stable

point q1, and demonstrate the behavior of the nonlinearities graphi-

cally. Two nonlinearities, asinh and atanh, are studied with the same

set of noncircular subgaussian sources shown in Figure 1.

Figure 4 shows the optimization landscape in the complex plane

of q1 and q2 along with the magnitude of the nonlinearities. As seen

in Figures 4(b) and 4(e), both stable points are found by maximiz-

ing the contrast function shown as black/white dots on the constraint

circle. In the q2 direction, 4(c) and 4(f), asinh provides a smooth op-

timization landscape while the atanh nonlinearity shows many max-

ima/minima, albeit far from the optimal solution of q2 = 0. Note

the singularities for atanh at ±1 in 4(d) and at ±j in 4(e), leading to

the non-convex landscape in the q2 direction rendering second-order

analysis inaccurate. This result explains as to why some nonlineari-

ties perform well with supergaussian sources and not subgaussian or

vice versa.

If, on the other hand, we study the landscape with the super-

gaussian source set, the stable point is now at a minimum which

corresponds to the point ejπ/2 in Figure 4(b) for asinh and ej0 in

Figure 4(e) for atanh. The stable point now falls into a smooth re-

gion for both asinh and atanh indicating good performance for both.

This is also seen in Figure 2(a) where atanh has a high value of IS

with supergaussian sources only.

5. CONCLUSION

We have derived the stability conditions for the CMN algorithm and

defined a measure, IS , for quantifying performance with noncircu-

lar sources. This measure provides information as to not only how

(a) |asinh(z)|2 (b) Complex plane of q1 (c) Complex plane of q2

(d) |atanh(z)|2 (e) Complex plane of q1 (f) Complex plane of q2

Fig. 4. Optimization landscapes in the complex planes of q1 and

q2 with asinh (top row) and atanh (bottom row) nonlinearities and

subgaussian sources. Figures (b) and (e) have the constraint circle

and the stable points shown. Red indicates large values.

well the algorithm performs but also how noncircular the sources

can be and still convergence can be achieved. We also found that

IS provides a measure as to how sensitive the convergence rate is to

noncircularity. Simulations were used to confirm these results. We

also examined the effect of singularities in the neighborhood of the

stable point and showed through graphical means that performance

is degraded due to the existence of many extrema far from the opti-

mal solution.

A. APPENDIX

A.1. Preliminaries
We use the mapping

�
z
z∗

�
=
�

1 j
1 −j

��
zR

zI

�

to write vector [zRT
zIT

]T as z = [z1, z
∗
1 , . . . , zN , z∗

N ]T through

the transformation R
2N �→ M ∈ C

2N .
The Taylor series expansions of f : R

2N �→ R and fC : M �→ R

are the same when the following gradient

∂f

∂z
=

1

2

�
∂f

∂zR
− j

∂f

∂zI

�
;

∂f

∂z∗ =
1

2

�
∂f

∂zR
+ j

∂f

∂zI

�
(9)

and Hessian forms

∇2
qqf(z0) =

∂2f(z)

∂z∗zT

����
z=z0

(10)

are used [6].

A.2. Derivation of two derivative forms
In this section, we show that for H(z) = f1(z

∗x)f∗
2 (z∗x) where f1

and f2 are analytic functions, we have

∂H(z)

∂z
= x∗f1(z

∗x)f ′∗
2 (z∗x) (11)

and
∂H(z)

∂z∗ = xf ′
1(z

∗x)f∗
2 (z∗x) (12)
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where f ′(z) = df(z)/dz.
We first use (9) to write

∂f∗(z∗x)

∂z
=

1

2

�
∂f∗(z∗x)

∂zR
− j

∂f∗(z∗x)

∂zI

�
. (13)

We then write f(z∗x) as the sum of two real-valued functions, u(a, b)+
jv(a, b). We use (13) and the chain rule to obtain

∂f∗(z∗x)

∂z
=

1

2

��
f∗

a
∂a

∂zR
+ f∗

b
∂b

∂zR

�
− j

�
f∗

a
∂a

∂zI
+ f∗

b
∂b

∂zI

��

=
1

2
x∗(f∗

a + jf∗
b ).

Substituting f∗
a = ua − jva, f∗

b = ub − jvb and the Cauchy-Riemann
conditions, ua = vb and ub = −va, we obtain

∂f∗(z∗x)

∂z
=

1

2
x∗ (ua − jva + j(ub − jvb)) = x∗f ′∗(z∗x).

Following similar algebraic steps and (9), one can find the following
relationships:

∂f(z∗x)

∂z
= 0,

∂f∗(z∗x)

∂z∗ = 0, and
∂f(z∗x)

∂z∗ = xf ′(z∗x).

Applying the chain rule and the above equations, we finally obtain
(11) and similarly (12).

A.3. Derivation of the stability conditions

We study the stability of the CMN algorithm, by examining the La-
grangian function for the constrained optimization problem

L(q, λ) = J(q) + λ(h(q)) (14)

at q1, where λ is the real-valued Lagrange multiplier and h(q) is

the constraint function, ‖q‖2 − 1. The second-order necessary and
sufficient conditions for a local minimum (resp. maximum) are

∇qL(q0) = 0 , ∇λL(λ0) = 0 (15)

and
yH∇2

qqL(q0)y ≥ 0 (resp. ≤ 0) (16)

with y defining the feasible directions {y|∇h(q0)
T y = 0} [2]. For

the unit norm constraint, the feasible directions thus become

[e−jθ, ejθ, 0, . . .] [y1, y
∗
1 , . . . , y∗

N ]T = 0

which constrains y∗
1 = −y1e

−j2θ and imposes no constraints on yi,
i = 2, . . . , N .

We first evaluate condition (15) by using (11) and (12) in (14)
and evaluating at q1. Noting that the sources are independent with
zero mean, we find

∇qL(q1) = E

�
���

G(q∗1s1)g
∗(q∗1s1)s

∗
1

G∗(q∗1s1)g(q∗1s1)s1
0
...

�
��	+ λ0

�
��

q∗1
q1
0
...

�
�	 . (17)

Setting the top row of (17) equal to zero and solving for λ0, we
obtain

λ0 = −E{G(e−jθs1)g
∗(e−jθs1)s

∗
1}ejθ

(18)

where we made the substitution q1 = ejθ .
To evaluate condition (16), we first find the second derivatives,

and again using (11) and (12), we obtain

∂2J
∂q∗

i qj
= sis

∗
j gg∗ ∂2J

∂q∗
i q∗

j
= sisjGg′∗

∂2J
∂qiqj

= s∗i s∗j Gg′∗ ∂2J
∂qiq∗

j
= sis

∗
j g∗g

(19)

where g′ is the derivative of g. Substituting (19) into (10) and eval-
uating at q1 we obtain the block diagonal matrix for the Hessian

∇2
qqL(q1) = E

�
���

A 0 . . . 0
0 B2 . . . 0
...

...
...

...
0 0 . . . BN

�
��	+ λ0I (20)

where A and Bi are each 2 × 2 matrices defined as

A =

�
s1s

∗
1g

∗(q∗1s1)g(q∗1s1) s2
1G

∗(q∗1s1)g
′(q∗1s1)

(s∗1)
2G(q∗1s1)g

′∗(q∗1s1) s1s
∗
1g

∗(q∗1s1)g(q∗1s1)

�

and

Bi =

�
g∗(q∗1s1)g(q∗1s1) s2

i G
∗(q∗1s1)g

′(q∗1s1)
(s∗i )

2G(q∗1s1)g
′∗(q∗1s1) g∗(q∗1s1)g(q∗1s1)

�
.

(21)
Simplifications occur from applying the independence, unit variance
and zero mean properties of the sources.

We can evaluate condition (16) by analyzing each submatrix

in (20) separately. Submatrix A must satisfy yH
1 (A + λ0)y1 > 0

(minimum), where y1 = [y1,−y1e
−j2θ]T from the feasible direc-

tions constraint. Substituting (18) into the above we obtain the con-
dition along dimension q1 for a minimum (resp. maximum)

2(E{A11} + λ0) > E{A12e
−j2θ + A∗

12e
j2θ} (resp. <) (22)

where Aij is the ith row and jth column of A. Expanding the non-
linearity G into its Maclaurin series expansion G(z) = α0 + α1z +
. . . + αkzk yields the result in our previous work (4).

We examine the behavior along the remaining dimensions

[q2, q
∗
2 , . . . , qN , q∗N ]T through submatrix Bi. Evaluating condition

(16) for stability requires each (Bi + λ0I) to be positive definite for
a local minimum and negative definite for a local maximum. Noting

that the form of Bi is B =



B11 B12

B∗
12 B11

�
the eigenvalues are

easily shown to be eig(B+λ0I) = B11+λ0±|B12|, which are real-
valued by inspection of the structure of matrix B. The conditions for
a local minimum (resp. maximum) are found by using (21) as

E
�

g(e−jθs1)g
∗(e−jθs1)



+ λ0 ±���E{sisi}E{G∗(e−jθs1)g

′(e−jθs1)}
��� > 0 (resp. < 0.)

and is given in (5) where we substituted (18) for λ0. Also of interest
is the condition number (κ), ratio of largest to smallest eigenvalue,

of each submatrix of ∇2
qqL(q1) which is found to be

κ =
emax

emin
=

(B11 + λ0) + |B12|
(B11 + λ0) − |B12| . (23)
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