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ABSTRACT

We are proposing a new approach to the solution of the cock-
tail party problem (CPP). The goal of the CPP is to isolate
the speech signals of individuals who are concurrently talking
while being recorded with a properly positioned microphone
array. The new approach provides a powerful yet simple alter-
native to commonly used methods for the separation of speak-
ers. It is based on the observation that the estimation of the
signal transfer matrix between speakers and microphones is
significantly simplified if one can assure that during certain
periods of the conversation only one speaker is active while
all other speakers are silent. Methods to determine such ex-
clusive activity periods are described and a procedure to es-
timate the signal transfer matrix is presented. A comparison
of the proposed method with other popular source separation
methods is drawn. The results show an improved performance
of the proposed method over earlier approaches.

1. INTRODUCTION

Up to date, the most successful approaches to solving the
cocktail party problem (CPP) employ blind source separa-
tion (BSS) techniques based on an assumption of statistical
independence of the sources [1, 2]. The goal is to find an un-
mixing system that maximizes a “measure of independence”
from the reconstructed source signals. Generally, one distin-
guishes between methods that consider instantaneous mixing
and methods that address convolutive mixing [1, 2]. In this
paper we are laying the foundation for an alternative solution
to the instantaneous mixing case. Extensions to convolutive
mixing are explored in a separate study [3].

The crux of the aforementioned approach is to find a good
(and mathematically tractable) “measure for independence.”
It was shown that a suitable objective in finding a solution is
provided by the minimization of a contrast function which is
a function of the PDF of the observed signals [2]. In the con-
text of speech and audio signal processing a suitable contrast
function is usually derived from a likelihood measure and/or
the INFOMAX concept [4]. The optimization procedure that
minimizes a contrast function (and thus provides a solution

to the BSS problem) is generally called an independent com-
ponent analysis (ICA) [2]. Even though the BSS techniques
have achieved remarkable results in the separation of mixed
audio signals, they are still suboptimal in regard of separa-
tion of speech, partially because they usually do not permit
an exploitation of the highly structured nature of speech.

The alternative method for speech separation that is pre-
sented in this paper is not based on an assumption of in-
dependence but is merely based on a simple observation of
the source signals. The estimation of the transfer matrix or
its inverse becomes trivial if we are able to assert that dur-
ing certain periods of time only one source is active and all
other sources are silent. If during the total observation time
each source went at least once through such an exclusive ac-
tivity period (EAP) then the full transfer matrix can be es-
timated. Conversational speech is generally characterized by
prolonged pauses from individual speakers and hence the prob-
ability of exclusive activity periods for individual speakers is
very high, especially if we are restricting ourselves to small
groups.

The caveat of the newly proposed method is that one needs
to reliably detect exclusive activity periods from the observed
signals. The detection of such periods becomes possible if
we are focusing on the unique structure of speech signals and
in particular the unique structure of voiced segments of the
speech signals.

The paper is organized as follows: section 2 introduces
setup and notation for the considered BSS problem. Section 3
summarizes the employed methods for EAP detection and the
estimation of the resulting de-mixing matrix. An experimen-
tal evaluation of the proposed method is presented in sections
4 and 5.

2. BACKGROUND AND NOTATION

The considered scenario is described by the following mathe-
matical model: we have K speakers in a room, each of which
produces a speech signal sk[n] (for k = 1, 2, . . . , K). The
K speech signals are captured by M microphones (M ≥ K),
each of which must be placed such that the acoustic wave-
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forms measured must be significantly different from micro-
phone to microphone1. The signal recorded at microphone
m will be referred to as the observed signal and is denoted
as xm[n] (for m = 1 . . . M ). To streamline the notation it is
beneficial to introduce the following row-vectors:

sk = [ sk[1] , sk[2] , . . . , sk[P ] ]T (1)

xm = [xm[1] , xm[2] , . . . , xm[P ] ]T, (2)

where P is the observation segment length in samples. For
simplicity we will use the notation sk and xm in three ways:
(i) to indicate vectors that encompass the entire recording
length (see section 4), (ii) to indicate one of a successive set
of 40 msec long segments of the recording (see section 3.1),
and (iii) to indicate an exclusive activity period which spans
multiple successive segments of length 40msec (see section
3.2). Matrices are formed from the vectors as S = [ s1 , s2 ,
. . . , sK ]T and X = [ x1 , x2 , . . . , xM ]T. If we assume in-
stantaneous mixing then the connection between the source
signal matrix S and the observed signal matrix X is deter-
mined by the constant mixing matrix A:

X = AS (3)

In general, the solution to the CPP is defined so as to deter-
mine an inverse/de-mixing matrix W such that matrix Ŝ from

Ŝ = WX (4)

provides an estimate for the rows of matrix S. The matrix
W is considered a de-mixing matrix when the matrix product
WA is a permutation matrix.

3. METHODS

The proposed source separation algorithm consists of two main
parts: i) the detection of EAP segments and ii) the determi-
nation of the de-mixing matrix W. A block diagram of the
proposed algorithm is shown in figure 1. The details of the
method are described in sections 3.1 and 3.2.

Fig. 1. A block diagram of the proposed source separation
algorithm. The de-mixing matrix W is estimated from EAP
sections of the observed signals X. The source estimates Ŝ
are obtained after equation (4).

1Appropriate placement of the microphones is crucial to ensure that the
resulting estimation problem is not being ill-conditioned.

3.1. EAP Detection

The detection of EAPs is facilitated by the following defini-
tion of a normalized signal-to-interference ratio (SIR) γ:

γ = 1
K−1 max

k

(
K

sT
k sk∑K

i=1 sT
i si

− 1

)
. (5)

If we let the sk’s denote successive 40 msec long segments of
the source signals then we obtain an SIR measure γ for each
segment. Note that the SIR is normalized such that 0 ≤ γ ≤ 1
(with γ = 1 indicating a perfect EAP event). Unfortunately,
we cannot access the true underlying SIR since we cannot
measure the source signals sk directly. Instead, we are esti-
mating γ from the observations xm. The proposed estimator
is based on the following three features:

(i) A Periodicity Measure. The pitch determination algo-
rithm (PDA) developed by Medan et. al. [5] aims to
determine the pitch of a voiced speech segment. The
method involves computing normalized inner products
between adjacent, variable length speech segments. The
inner product is maximized when the segment length
equals the pitch period. The normalized inner product
at the pitch provides a measure of periodicity fp for the
given signal segment xm.

(ii) The Harmonic-to-Signal Ratio. The energy of a voi-
ced speech segment is concentrated around the harmonic
frequencies of its pitch. The harmonic-to-signal ra-
tio (HSR) fh is defined as the ratio of spectral energy
around the pitch harmonics versus the overall energy of
signal xm. Its computation is achieved by comparing
the energy of the output of a pitch synchronous comb-
filter with the total signal energy [6].

(iii) The Spectral Autocorrelation. Spectral autocorrela-
tion measures are used in many PDAs (in addition to
temporal correlation measures) to combat pitch-doub-
ling/pitch-halving errors. We are employing the nor-
malized spectral autocorrelation proposed in [6]. The
maximum autocorrelation value fs in the pitch frequen-
cy range (50Hz to 500Hz) is determined and used as a
feature for the SIR estimation.

The SIR is estimated via γ̂ = Φ(fp, fh, fs) in which Φ(. . .)
is a three dimensional, second order polynomial. The opti-
mal polynomial coefficients are chosen to minimize the least-
squares error between the estimated SIR (ESIR) γ̂ and the true
underlying SIR γ for the training set described in section 4.
The resulting normalized correlation coefficients between fp,
fh, fs, γ̂ and γ are shown in table 1. The EAP detection is
performed with a threshold test. A segment is flagged as an
EAP if γ̂ is greater or equal to a threshold γ̄ (see section 4). A
time segment is considered an exclusive activity period if the
corresponding segments xm are all flagged as EAPs across
all channels m = 1 . . . M .
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Table 1. Correlation Coefficients for SIR Estimation

Feature Correlation with γ

Periodicity Measure fp 0.5838
Harmonic-to-Signal Ratio fh 0.4360
Spectral Autocorrelation fs 0.4329
Polynomial Estimate γ̂ 0.6338

3.2. Estimation of the De-mixing Matrix

During a true exclusive activity period it is readily verified
that the observed signals xi are scalar multiples of the one
active source signal sq. We can obtain an estimate for sq from
each channel i by multiplying the channel output xi with a
channel specific scalar wi:

ŝq
i = wi xi. (6)

Ideally, we want ŝq
i = ŝq

j for all i and j, which leaves us
with an infinite number of choices for the wi’s if all of the xi’s
are truly linearly dependent. Due to imperfect EAP detection
and background noise, however, we are generally not able to
achieve ŝq

i = ŝq
j for all i and j for any set of channel weights

wi. Instead, we may seek to choose the wi’s such that the
deviation between each ŝq

i and their average s̄q = 1
M

∑M
j=1 ŝq

j

is minimized, i.e.

minimize
wi

Cq =
M∑
i=1

‖ ŝq
i − s̄q ‖2 subject to ‖ s̄q ‖2 = ζ2. (7)

The constraint is necessary to avoid the trivial (yet meaning-
less) solution wi = 0 for all i. Expanding the terms of the
cost function leads to

Cq =
M∑
i=1

w2
i x

T
i xi − 1

M

M∑
i=1

M∑
k=1

wiwkxT
i xk, (8)

which can be compactly written in matrix notation as

Cq = wT[Rd − 1
M R ]w (9)

with R = XTX, Rd = diag(R) and w = [w1 , w2 , . . . ,
wM ]T. With Lagrange multiplier λ we can cast equation (7)
into the Lagrange function

L(w, λ) = wT[M Rd − (1 + λ)R ]w − λM2 ζ2. (10)

Differentiating L(w, λ) with respect to w and equating to
zero results in the condition

Rd w = λ+1
M Rw. (11)

Condition (11) is satisfied by the generalized eigenvectors of
matrices R and Rd (with λ+1

M being the generalized eigen-
values). It is readily shown that out of the M generalized

eigenvectors we must choose the one wq with the smallest
eigenvalue to minimize the cost function Cq.

The transpose of the solution wq establishes the q’s row
of the de-mixing matrix W. We must observe at least one
EAP from every source to obtain a full estimate of W. The
decision of whether a set of disjoint EAPs belongs to the same
source or to different sources is done with a simple hierarchi-
cal clustering algorithm2. If multiple estimates of wq (from
disjoint EAPs) are cast into the same cluster then their (renor-
malized) centroid is used as the corresponding row in W.

4. EXPERIMENTS

We evaluated the performance of the proposed method with
mixing/de-mixing trials over speech data from the TIMIT3

database. The TIMIT dataset contains recordings of 10 pho-
netically rich sentences from 630 speakers of 8 major dialects
of American English. The corpus is stored in 16bit/16kHz
waveform files for each utterance. One subset of files is strictly
reserved for training and another subset is reserved for testing.

During each mixing/de-mixing trial we randomly chose
M utterances si from the corpus. The M utterances were
mixed with a random mixing matrix A according to equation
(3) to produce M observations xi. The elements of A were
chosen as independent, uniformly distributed random num-
bers over the interval [0, 1]. The observations xi were then
subjected to the proposed de-mixing procedure to produce M
source estimates ŝi.

The quality of the de-mixing process was measured with
the following signal-to-noise ratio (SNR):

SNR = min
P∈P

10
M

∑
[i,j]∈P

log
[

sT
i si

(si − η ŝj)T(si − η ŝj)

]
. (12)

The scaling factor η is chosen as η = ŝT
i sj/(ŝT

i ŝi) to account
for the unknown scaling of the reconstructed signals. Parame-
ter P refers to a set of M index pairs [i, j] with i = 1 . . . M
and j = 1 . . . M and such that each number between 1 and
M is only used once for i and once for j. P is the entirety of
all possible index sets P. The minimization over P accounts
for the unknown signal permutations introduced by WA as
discussed in section 2.

In a first experiment we ran several sets of 256 random
mixing/de-mixing trials with M = 2 over the training subset
of the corpus. For each set of 256 trials we chose a different
EAP decision threshold γ̄ as described in section 3.1. The
resulting average SNR (averaged over all trials) as a function
of γ̄ is displayed in figure 2. The optimal threshold, i.e. the
one that produced the highest average SNR, was found to be
γ̄ = 0.85.

2It is assumed that the underlying number of sources is known and that
all sources have at least one EAP.

3The TIMIT database is available through the Linguistic Data Consortium
(LDC) at the University of Pennsylvania (www.ldc.upenn.edu).
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Fig. 2. Determination of the EAP decision threshold γ̄. The
average SNR is maximized in the two channel case (M = 2)
for γ̄ = 0.85.

In a second experiment we ran several sets of 256 random
mixing/de-mixing trials over the testing subset of the corpus.
This time, we kept γ̄ fixed at 0.85 and varied the number of
sources/channels M . The resulting average SNR (averaged
over all 256 trials per M ) as a function of M is shown in
figure 3 (EAPD).

5. RESULTS

The performance of the proposed exclusive activity period de-
tection (EAPD) algorithm and two other popular BSS meth-
ods, FastICA4 [7] and AMUSE4 [8], are presented in figure 3
for comparison. For each method the average SNR and the
standard deviation over all 256 trials per M are shown (via
I-bars).

The proposed EAPD method clearly outperforms the other
two methods for smaller source numbers. As the number of
simultaneously talking sources M increases, the number (and
quality) of available EAP sections naturally decreases. As
a result, the performance of the proposed method declines.
All methods performed around the same average SNR for 6
and more simultaneous sources (with a slight edge of Fas-
tICA and EAPD over AMUSE). Increased errors in EAP de-
tection, however, lead to a much larger standard deviation of
the EAPD method in comparison to FastICA and AMUSE at
higher source numbers.

6. CONCLUSIONS

We presented a new approach to the solution of the cocktail
party problem with instantaneous mixing. Instead of insist-
ing on independence between sources and samples, we ex-
ploited the fact that speech is generally characterized by fre-
quent pauses (EAPs). These pauses can be used for a one-

4We employed software provided by the original developers of the Fas-
tICA and AMUSE algorithms for the comparison. All third part software was
run with default parameters.
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Fig. 3. An SNR comparison between the proposed method
(EAPD) and two other popular BSS methods: FastICA
(FICA) [7] and AMUSE [8].

channel-at-a-time estimation of the unknown mixing matrix.
Experiments have shown that the proposed method can out-
perform common BSS methods, especially for smaller source
numbers.

It should be noted that the presented simulation results
were obtained from (unrealistically) harsh conditions for the
EAP detection. All speakers were talking at the exact same
time. The resulting EAP sections were, hence, short and gen-
erally of poor quality. More realistically, speakers tend to lis-
ten and respond in a dialog which makes the detection of long,
high quality EAP section much more probable.
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