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ABSTRACT

We address the problem of blind separation of image
mixtures (resulting, e.g, from reflections through win-
dow glass) consisting of pure unknown relative spatial-
shifts in addition to scalar mixing coefficients. Most
(and maybe all) existing approaches to the problem
assume static mixtures, i.e., the spatial positions of
the source images are assumed to remain fixed between
snapshots. We propose an integrated method to esti-
mate both the mixing coefficients and the spatial-shifts
using a second-order statistics based algorithm, which
uses specially parameterized approximate joint diag-
onalization of two-dimensional-spectra matrices. The
accommodation of spatial shifts allows the exploita-
tion of further diversity between snapshots, and thus
enables to attain improved separation, especially when
the static mixing coefficients are ill-conditioned - as we
demonstrate using simulations results.

1. INTRODUCTION

Quite commonly in photography, when scenes are
recorded through window glass under poorly balanced
lighting conditions, a reflection of the room interior ap-
pears superimposed over the outside scene. Separat-
ing such reflections from the scene of interest is quite
difficult when a single image (snapshot) is available
(although it has been attempted, e.g., in [1]). How-
ever, when (at least) two such snapshots are avail-
able, each taken under slightly different conditions, it is
conceivable that successful separation can be attained
by proper exploitation of the diversity in the different
snapshots. Such an approach has been considered from
different aspects, e.g., optical (based on diverse polar-
ization [2] or on convolutive transformations [6] such
as focusing [3]), or intensity-profile based source sepa-
ration, based on diversity in the lighting conditions [4],
[5].

Different relative spatial-shifts of the sources be-
tween snapshots are the inevitable outcome of possible
movement of the camera / reflective medium / recorded

objects from one snapshot to another. Moreover, such
relative shifts can be introduced deliberately (e.g., by
slightly slanting the window between snapshots), so as
to introduce yet another source of diversity. To the best
of our knowledge, the separation of images with differ-
ent relative shifts has not yet been considered explicitly
in open literature. The approaches mentioned above,
as well as some other methods, assume either a model
of static (unshifted) linear mixing, or a more general
convolutive mixture model, which is generally too over-
parameterized to address the relative-shifts model.

For single-dimensional signals, the extended AC-
DC algorithm in [7] demonstrated a solution for the
problem of mixed time-domain sources with different
relative time-delays. In this paper we address a model
similar to the single-dimensional one considered in [7],
but extend the approach of [7] to accommodate two-
dimensional (2D) image signals, with time-delays sub-
stituted by spatial-shifts.

The shifts are assumed to have occurred prior to the
sampling (digital imaging) process, and are therefore
not necessarily an integer multiple of pixels. The (pre-
sampled, continuous-space) source signals (images) are
assumed to be mutually uncorrelated, wide-sense sta-
tionary (WSS) with unknown spectra. Yet, it has to be
stressed, that the stationarity assumption is only used
for simplifying the derivation, and is not instrumen-
tal for the resulting performance. The more important
condition for successful separation in this context, is
that the sources be mutually uncorrelated. Luckily,
this property is widely satisfied by images of indepen-
dent sources, unlike the stationarity assumption, which
is rarely satisfied in natural images.

We consider the following L sources - L sensors
model (to be later reduced to L = 2):

xp(u, v) =
L∑

q=1

apqsq(u − du
pq, v − dv

pq) p = 1, 2, . . . L

(1)
where sq(u, v) are 2D zero-mean, WSS processes with
unknown spectra, xp(u, v) are the observations, apq are
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the mixing coefficients and du
pq, d

v
pq are the shifts in u,

v directions of source image q in mixture p with respect
to its position in mixture 1. Without loss of generality,
we use as a “working assumption” zero shifts of the
source images in the first mixture, i.e., du

1q = dv
1q = 0

for q = 1, 2, . . . L.
The available data are samples of the continuous-

space observations, xp[m,n] = xp(m∆, n∆) 1 ≤
m ≤ M , 1 ≤ n ≤ N , where ∆ is the sampling in-
terval, assumed to comply with the Nyquist rate (we
shall use parentheses / brackets to enclose continuous-
/ discrete- time indices, respectively).

The paper is organized as follows: In the next sec-
tion we formulate the estimation problem as a spe-
cially parameterized approximate joint diagonalization
(AJD) problem in the frequency domain; In section 3
we propose an iterative algorithm for the AJD, based
on an extension of the AC-DC algorithm for non-
orthogonal AJD [8]; In section 4 we present some sim-
ulation results.

2. FORMULATION AS A JOINT
DIAGONALIZATION PROBLEM

The observations’ correlation functions are given by

Rx
mn(ξ, η)

�
= E[xm(u+ξ, v+η)xn(u, v)] =

L∑
p,q=1

ampanq·

· E[sp(u − du
mp + ξ, v − dv

mp + η)sq(u − du
nq, v − dv

nq)]

=
L∑

q=1

amqanqR
s
q(ξ + du

nq − du
mq, η + dv

nq − dv
mq)

1 ≤ m,n ≤ L (2)

where Rx
mn(ξ, η) denotes the correlation between the

m-th and the n-th mixed images, and Rs
q(ξ, η) de-

notes the autocorrelation of the q-th source image.
Fourier-transforming (2), we obtain Sx

mn(ω, θ), the
cross-spectrum between the m-th and n-th mixtures

Sx
mn(ω, θ) =

L∑
q=1

amqanqS
s
q (ω, θ)e−jω(du

mq−du
nq)−jθ(dv

mq−dv
nq)

1 ≤ m,n ≤ L (3)

where Ss
q (ω, θ) is the q-th source’s unknown spectrum.

Eq. (3) can also be expressed in matrix-form as

Sx(ω, θ) = B(ω, θ)Ss(ω, θ)BH(ω, θ) (4)

where Sx(ω, θ) is an L × L matrix consisting of
Sx

mn(ω, θ) as the m,n-th element, Ss(ω, θ) is an L×L

diagonal matrix consisting of Ss
q (ω, θ) as its (q, q)-th

elements, and B(ω, θ) is the L × L matrix given by
B(ω, θ) = A � Du(ω) � Dv(θ), where � denotes
Hadamard’s (element-wise) product, A is the constant
matrix of mixing coefficients, whose m,n-th element is
amn, and Du(ω),Dv(θ) contain the shifts, such that
their m, n-th elements are given by

Du
mn = e−jωdu

mn , Dv
mn = e−jθdv

mn 1 ≤ m,n ≤ L. (5)

The cross-spectral matrices Sx(ω, θ) are unknown,
but can be estimated from the available data, pos-
sibly by using the 2D Discrete-Space Fourier Trans-
form (DSFT) of a truncated series of biased cross-
correlations estimates (Blackman-Tuckey’s method,
e.g., [9]). Specifically, to estimate the m,n-th element
of Sx(ω), we may use

Ŝx
mn(ω, θ) =

Pu∑
�=−Pu

Pv∑
k=−Pv

R̂mn[�, k]e−jω�−jθk (6)

where Pw is the truncation-window length in direction
w = u, v and

R̂mn[�, k] =
1
M

1
N

M−|�|∑
p=1

N−|k|∑
q=1

xm[p + �, q + k]xn[p, k]

− Pu ≤ � ≤ Pu , −Pv ≤ k ≤ Pv (7)

When estimated values, rather than true val-
ues, of Sx(ω, θ) are used, the equations (4)
usually can no longer be satisfied simultane-
ously at all frequencies. Nevertheless, once
Sx(ω, θ) is estimated at several frequencies-pairs
(ω0, θ0), (ω0, θ1), . . . (ωk, θj), . . . (ωK , θJ), an estimate
of the unknown parameters of interest can be obtained
by resorting to AJD (see e.g. [8]), seeking to minimize
the following least-squares (LS) criterion:

min
A,∆u,∆v,Γ

CLS
�
=

K∑
k=0

J∑
j=0

||Sx(ωk, θj)−

− B(ωk, θj)Ss(ωk, θj)BH(ωk, θj)||2F (8)

where ∆w (w = u, v) is an L×L matrix containing the
shift parameters dw

mn, Γ is an L × (K + 1) × (J + 1)
(3-dimensional) matrix containing the sources’ spectra,
γmkj = Ss

m(ωk, θj) 1 ≤ m ≤ L; 0 ≤ k ≤ K; 0 ≤ j ≤ J
and || · ||2F denotes the squared Frobenius norm. Note
that it is also possible to use a weighted LS criterion
by introducing some positive weights wkj into the sum;
however, to simplify the exposition, we shall not pursue
this possibility in here.
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Several AJD algorithms have been proposed in re-
cent years, however they all assume a fixed diagonaliza-
tion matrix B, rather than B(ωk, θj) which depends on
the indices (k, j). In [7] an extension of one particular
AJD algorithm (AC-DC, [8]) was proposed to address
the one-dimensional problem, i.e., B(ωk). In the next
section we propose further extension of the extended
AC-DC, adapted to this 2D minimization problem.

3. AJD VIA EXTENDED 2D-AC-DC

AC-DC (“Alternating Columns / Diagonal Centers”,
[8]) is an alternating-directions minimization algo-
rithm, originally intended for the case of a fixed di-
agonalizing matrix B. In our case the matrix B is not
constant, but can be factored so as to depend on three
constant matrices, A, ∆u and ∆v. It is then possi-
ble to minimize with respect to (w.r.t.) each column
of A and pair of matching columns (columns with the
same index) of ∆u and ∆v separately, thus alternating
between minimizations w.r.t.: Γ (DC phase); each col-
umn of A (AC-1 phase); pair of matching columns of
∆u and ∆v (AC-2 phase). Due to limited space, only
final expressions will be given here for the DC and AC-
1 phases, based on the algebraic work done in [7]. The
AC-2 phase, being the fundamental innovation of this
paper, will be described more extensively.

3.1. The “DC” phase

In the DC phase we wish to minimize CLS w.r.t. Γ,
with A, ∆u and ∆v fixed. As described in [7] the mini-
mization can be decomposed into (K +1)× (J +1) dis-
tinct minimization problems which are all linear in the
unknown parameters, and thus admit the well-known
linear LS solution. We define γkj to be the (k, j)-th

column of Γ, ykj
�
= vec{Sx(ωk, θj)} (vec{·} denoting

the concatenation of the matrix’ columns into one vec-
tor), and Hkj = (B(ωk, θj)∗ ⊗ 1) � (1 ⊗ B(ωk, θj))
where 1 denotes an L×1 vector of 1-s, ⊗ denotes Kro-
necker’s product and the superscript ∗ denotes conju-
gation. The minimizer of the linear LS problem is

γkj = [HH
kjHkj ]−1HH

kjykj . (9)

3.2. The “AC-1” phase

We now wish to minimize CLS w.r.t. a�, the �-th (� =
1, 2, . . . L) column of A, assuming the other columns,
as well as ∆u, ∆v and Γ, are fixed. We Define

S̃(ωk, θj)
�
= Sx(ωk, θj)−

L∑
n=1
n�=�

Ss
n(ωk, θj)bn(ωk, θj)bH

n (ωk, θj)

(10)

where bn(ωk, θj) is the n-th column of B(ωk, θj). Ob-
serve now, that b�(ωk, θj) can be written as b�(ωk, θj) =
Λ�(ωk, θj)a� where Λ�(ωk, θj) = diag{e−jωkdu

1�−jθjdv
1� ,

e−jωkdu
2�−jθjdv

2� , . . . , e−jωkdu
L�−jθjdv

L�}. The obtained
minimizing solution (see [7]) is

a� =
√

λmax/f · αmax (11)

Where f
�
=

∑J,K
j,k=0(S

s
� (ωk, θj))2 and αmax is the eigen-

vector of Real{F } associated with the largest (positive)
eigenvalue, λmax. F is the Hermitian matrix:
F

�
=

∑J,K
j,k=0 Ss

� (ωk, θj)Λ∗
� (ωk, θj)S̃(ωk, θj)Λ�(ωk, θj).

3.3. The “AC-2” phase

It is now desired to minimize CLS w.r.t. du
� and dv

� , the
�-th (� = 1, 2, . . . L) columns of ∆u and ∆v respectively,
assuming the other columns, as well as A and Γ are
fixed. Using the definitions from the AC-1 phase we
can obtain, through some algebraic manipulations

CLS = C̃ − 2aT
� Fa� + (aT

� a�)2f. (12)

where C̃ is a constant. Since the dependence on the
shifts du

� , dv
� appears only through F , minimization of

CLS requires maximization of aT
� Fa�, or, more explic-

itly, maximization w.r.t. {du
p�, d

v
p�}L

p=2 of

L∑
p,q=1

ap�

⎡
⎣

J,K∑
j,k=0

G�
pq(ωk, θj)e−j(du

q�−du
p�)ωk−j(dv

q�−dv
p�)θj

⎤
⎦ aq�

(13)

where G�(ωk, θj)
�
= Ss

� (ωk, θj)S̃(ωk, θj). If we focus
on the (relatively) simple L = 2 case: Note that in
this case, only two elements (out of four) in the outer
summation in (13) depend on the unknown shifts - the
elements corresponding to p �= q. Thus, for � = 1 we
seek to maximize, w.r.t. du

21 and dv
21:

a11a21

⎡
⎣

K∑
k=0

J∑
j=0

G1
12(ωk, θj)e−jdu

21ωk−jdv
21θj

⎤
⎦ +

+ a11a21

⎡
⎣

K∑
k=0

J∑
j=0

G1
21(ωk, θj)e+jdu

21ωk+jdv
21θj

⎤
⎦ (14)

Observing that due to conjugate-symmetric struc-
ture of G1(ω, θ) these two terms are a conjugate pair
and that aij ≥ 0, we end up maximizing

max
u,v

Real{g1(u, v)} (15)

where g1(u, v)
�
=

∑J,K
j,k=0 G1

21(ωk, θj)ejuωk+jvθj . If the
frequencies {ωk} and {θj} are chosen as ωk = kΩ, k =
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0, 1, . . .K and θj = jΘ, j = 0, 1, . . . J (with Ω and Θ
selected constants), then g1(u, v) is the IDFT of the se-
quence G1

21(ωk, θj). The value of the constants Ω and
Θ determines the resolution of the search. The search
may be conducted in a pre-defined range of the possi-
ble images’ shifts. The same way, for � = 2 (looking
for du

21, dv
21) we need to maximize Real{g2(u, v)} with

g2(u, v)
�
=

∑J,K
j,k=0 G2

21(ωk, θj)ejuωk+jvθj . A rough “in-
telligent” initial guess for the shifts may be obtained
from observing the locations of the (two) peaks of the
cross-correlation between the mixtures (Rx

21(ξ, η)).

3.4. Pre-Processing Stage: Edge Sharpening

Since the important condition of uncorrelated sources
is generally better satisfied between edge-enhanced
images than by their original counterparts, we at-
tained considerably better estimation (hence, separa-
tion) when a linear shift-invariant (zero-phase, 9 × 9)
edge-sharpening filter was applied to both mixtures as
a preprocessing stage. Such filtering is merely equiva-
lent to the introduction of spectral shaping, resulting
in special weighting of the LS criterion (8), which at-
tributes more weight to respective frequencies in the
AJD process.

4. SIMULATIONS RESULTS AND
CONCLUSIONS

We present two experiments of synthetic mixture sepa-
ration. In the first experiment we artificially mixed the
two source images with a non-singular mixing matrix
A =

[
0.65 0.35
0.42 0.58

]
. In the second experiment we simu-

lated a shifts-only mixture scenario, therefore we used
a singular matrix A =

[
1 1
1 1

]
, so as to demonstrate

the attainable separability induced by the shifts in a
case that would otherwise be inseparable. In both ex-
periments the true shifts matrices were ∆u =

[
0 0−1 2

]
∆v =

[
0 0
3 1

]
. We applied 2D-AC-DC to both, using, as

an initial guess, the identity matrix for A and all-zeros
matrices for ∆u, ∆v.

In the non-singular case we also compared to the re-
sult of separating with the true (inverse) mixing matrix
while ignoring the spatial-shifts: Images (a),(b) in Fig-
ure 2 demonstrate the importance of shifts-estimation.
Even when the true mixing matrix is known, the sepa-
ration results are poor if the spatial-shifts are not con-
sidered. Shifts-estimation also enables separation in
the shifts-only (“singular”) mixtures case, as can be
observed from Images (e),(f) in Figure 2 (note, how-
ever, that some related tolerable artifacts can also be
observed in that case).

a

b

c

d

e

f

Fig. 1: (a)(b) Sources, (c)(d) Mixture with non-singular coefficients,
(e)(f) Mixture with a singular coefficients matrix

a

b

c

d

e

f

Fig. 2.: (a)(b) Zero-shift clairvoyant separation, (c)(d) Non-singular
case separation, (e)(f) Singular case separation
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