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ABSTRACT

We consider a classification problem wherein the class fea-
tures are not given a priori. The classifier is responsible for
selecting the features, to minimize the cost of observing fea-
tures while also maximizing the classification performance.
We propose a reward-directed Bayesian classifier (RDBC)
to solve this problem. The RDBC features an internal state
structure for preserving the feature dependence, and is for-
mulated as a partially observable Markov decision process
(POMDP). The results on a diabetes dataset show the RDBC
with a moderate number of states significantly improves over
the naive Bayes classifier, both in prediction accuracy and ob-
servation parsimony. It is also demonstrated that the RDBC
performs better by using more states to increase its memory.

1. INTRODUCTION

A traditional Bayesian classifier can be viewed as a 4-tuple
〈C,X ,O, Ωc,o1o2···od

〉, where C is a finite set of class labels
and X = {x1, x2, · · · , xd} is a finite set of class features,
O = O1 ×O2 × · · · × Od with Oi defining the set of possi-
ble observations of xi, and Ω is the observation function with
Ωc,o1o2···od

denoting the probability of observing [o1, o2, · · · ,
od] ∈ O given class label c ∈ C. The goal of Bayesian clas-
sification is to correctly predict the class label of any given
observation vector in O. Denoting by p(c) the prior distribu-
tion of class labels, its posterior distribution is computed by
Bayes rule,

p(c|o1, o2, · · · , od) =
p(o1, o2, · · · , od|c)p(c)

∑
c∈C p(o1, o2, · · · , od|c)p(c)

(1)

A traditional Bayesian classifier makes predictions based on
observations of all features in X , with no mechanism for se-
lecting the features to observe.

In many applications such as medical diagnosis, observ-
ing a feature may entail expensive instrumental measurement
and time-consuming analysis. Given a limited budget, time,
or other resources, it may not possible to observe all features.
Moreover, some features may not be as helpful to diagnosis
as others. Selectively observing the most useful features is
important in minimizing the cost (negative reward). In other

respects, some diseases may be more serious and require more
accurate prediction than others. In such scenarios the classi-
fier must jointly maximize prediction accuracy and observa-
tion reward (negative cost) by quantifying the reward/cost in
a unified manner. In this paper we refer to this type of classi-
fication as reward-directed classification.

The problem of reward-directed classification has been in-
vestigated perviously by Bonet and Geffner [1], and Guo [2],
under the naive Bayes assumption that the features [x1, x2,
· · · , xd] are independent conditional on the class label, i.e.,
p(o1, o2, · · · , od|c) =

∏d
i=1 p(oi|c) for all [o1, o2, · · · , od] ∈

O. This assumption is very strong and can result in serious de-
graded classification performance in real applications, where
the assumption is often violated.

In this paper we propose a reward-directed classification
algorithm in which the naive Bayes assumption is relaxed.
The key idea is to use a Markov chain as an internal repre-
sentation of feature dependence. We demonstrate using a real
medical data set that a Markov chain with a moderate number
of states can significantly improve the classification accuracy
as well as reduce observation cost.

2. THE PROPOSED REWARD-DIRECTED
BAYESIAN CLASSIFIER (RDBC)

2.1. Intuitive Description of the RDBC

Before proceeding to the mathematical formulation, we give
an intuitive description of the RDBC, emphasizing the aspects
in which it is different from the traditional Bayesian classifier.

The features used by the RDBC for prediction are not
given a priori and the RDBC is responsible to choose the
features to use, from a given feature set X . The features
are selected and observed sequentially. Assume the RDBC
is instructed to observe n features and a given feature can
be repeatedly observed. At the time of making the i-th ob-
servation, the RDBC has collected a list of past observations
and the associated feature indices εi = [a0o1, · · · , ai−2oi−1],
where oj is an observation of feature xaj−1 , j = 1 · · · i − 1.
See Figure 1 for a graphical illustration of the relations of o
and a. In choosing ai−1 (the feature index of oi), the RDBC
takes into account the list εi and the conditional distribution
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p(oioi+1 · · · on| εi, ai−1a
∗
i · · · a∗

n−1), where a∗
j−1, i + 1 ≤

j ≤ n, is the optimal feature index for oj given the RDBC is
instructed to observe n − j + 1 features [oj · · · on]. A policy
of feature selection is learned with the goal of simultaneously
maximizing the reward of correct prediction and minimizing
the cost of observation and false prediction.

The RDBC uses an internal Markov chain to represent the
feature dependence of a given class. Let o1, · · · , on be the
observations of n features xa0 , · · · , xan−1 ∈ X , respectively.
The RDBC expresses the class-conditional probability as

p(o1, · · · , on|c, a0, · · · , an−1)
=

∑
s0··· sn∈Sc

p(o1, · · · , on, s0, · · · , sn|a0, · · · , an−1)(2)

where si is the internal state of oi, i = 1 · · ·n, Sc is a finite
set of internal states defined for class c, and s0 is an initial
state. See Figure 1 for a graphical illustration of the relations
of s, o, and a.

It is clear that such a representation is sensitive to the or-
der of {o1 · · · on} and the associated {a0 · · · an−1}, which
implies that different permutations of {(a0o1), · · · , (an−1on)}
appear different to the representation. This order informa-
tion is necessary in the sequential feature selection process.
However, the order sensitivity may make p(o1 · · · on|c, a0

· · · an−1) different for different permutations of {(a0o1), · · · ,
(an−1on)}, which is harmful as this probability is being treated
as the joint probability of {o1, · · · , on} conditional on {c, a0,
· · · , an−1} and should remain invariant regardless of the or-
der. To preserve the order-invariance, training of this repre-
sentation (i.e., estimation of its state transition probabilities
and observation probabilities) must be based on a sufficient
number of permutations of each {(a0o1), · · · , (an−1 on)} to
make the permutations equally probable in the resulting rep-
resentation.
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Fig. 1. Representation of feature dependence for a given class in the
RDBC. Each node is dependent on (and only on) the nodes that em-
anates a directed edge to it. Though the internal state s is Markovian,
the observation o is not, therefore the dependence among o1 · · · on

is well represented.

2.2. Mathematical Formulation of the RDBC

The proposed RDBC can be formulated as a Partially Observ-
able Markov Decision Process (POMDP) [3] with a special-
ized state structure. Specifically, the RDBC is defined as a

8-tuple 〈C, X ,O,S, A, T a
ss′ , Ωa

s′o, R〉, where C is a finite set
of class labels and X = {x1, x2, · · · , xd} is a finite set of
class features; the remaining 6 elements are the elements in a
standard POMDP and they are specified below.

The O is a union of disjoint sets O1, O2, · · · , and Od,
with Oi denoting the set of possible observations of xi. The
S is a union of disjoint sets S1, S2, · · · , S|C|, and {t}, with Sc

the set of internal states for class c , t the terminal state, and
|C| denoting the cardinality of C. The A = {1, · · · , d, d +
1, · · · , d + |C|} is the set of possible actions; letting a be an
action variable, a = i denotes “observing feature xi” and
a = d + c denotes “predicting as class c”.

The T are the state-transition matrices with T a
ss ′ denot-

ing the probability of transiting to state s ′ by taking action
a in state s. The RDBC prohibits transition between inter-
nal states of different classes, therefore T a

ss ′ = 0, ∀ a ∈ A,
s ∈ Sc, s′ ∈ Sc′ , c �= c′. In addition, the RDBC has a
probability-one transition from any non-terminal state to the
terminal state when the action a is “predicting”, i.e., T a

ss ′ =
1, ∀ d+1 ≤ a ≤ d + |C|, s �= t, s′ = t; and it has a uniformly
random transition from the terminal state to an internal state
of any class when the action a is “observing a feature”, i.e.,
T a

ss ′ = 1/(|Sc| |C|), ∀ 1 ≤ a ≤ d, s = t, s′ ∈ Sc. The state
transitions in the RDBC are illustrated in Figure 2 for a two-
class problem (|C| = 2), with two internal states defined for
class 1 (|S1| = 2) and three internal states defined for class 2
(|S2| = 3).

The Ω are the observation functions with Ωa
s ′o denoting

the probability of observing o after performing action a and
transiting to state s ′. The R is the reward function with R(s, a)
specifying the expected immediate reward that is received by
taking action a in state s.

Using the definitions of the RDBC, we have the expansion

p(o1· · ·on, s0. . .sn|a0· · ·an−1)=p(s0)
∏n

i=1T
ai−1
si−1si

Ωai−1
oisi

(3)

where we assume that given class c the initial state is uni-
formly distributed in Sc, i.e., p(s0) = 1

|Sc| given class c.
When |Sc| = 1, we have p(si|si−1, ai−1) = 1 and con-
sequently p(o1 · · · on, s0 · · · sn|a0 · · · an−1) = p(s0)

∏n
i=1

p(oi|si, ai−1), which is substituted into (2) to get

p(o1, · · · , on|c, a0, · · · , an−1) =
∏n

i=1p(oi|c, ai−1) (4)

Equation (4) shows that the distribution of observations con-
ditional class c reduces to a naive Bayes expression when a
single state is defined for class c. This demonstrates that in
order to capture feature dependence of a class, multiple states
must be defined for the class.

2.3. Learning of the RDBC

To learn the RDBC, one first obtain C, X , O, and A from
the problem, determine |Sc| the number of internal states for
each class c, and then estimate the transition matrices T and
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Fig. 2. An illustration of state transitions in the proposed RDBC. A
solid circle denotes a state of class 1; a hollow circle denotes a state
of class 2; the diamond denotes the terminal state. A directed edge
connecting two states denotes a transition from the initial state to the
destination state; the number marked by the edge denotes the prob-
ability of the associated state transition; an edge with no numbers
indicates that the associated transition probability is to be estimated
from training data.

observation functions Ω from a training data set, using the
standard Expectation-Maximization (EM) method [4]. Upon
completion of these, one obtains the RDBC representation of
the class-conditional distribution of observations, as given by
(2) and (3).

One then determines a reward function R according to the
objective in the problem, and learns a policy for choosing the
actions. The goal in policy learning is to maximize the ex-
pected future reward (value) [3]. The most widely used pol-
icy learning method for POMDP is value iteration. Denote by
Vn the value function when looking n steps ahead (i.e., with
a horizon length n), value iteration iteratively estimate Vn,
starting from n = 0 and proceeding backwards to the desired
horizon length N . Exact value iteration for POMDP is usu-
ally intractable because the computation grows exponentially
with horizon length n. Approximate methods must be used
instead, of which the point-based value iteration (PBVI) [5] is
an efficient algorithm with a computation complexity growing
polynomially with n. The PBVI represents a practical algo-
rithm and we use it to learn the policy in our experiment.

3. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed RDBC on the
Pima Indians Diabetes dataset [6], a public data set available
at http://www.ics.uci.edu/ mlearn/MLSummary.html. The
dataset consists of 768 medical instances for diabetes diag-
nosis. Each instance consists of 8 features, representing 8
distinct medical measurements. The observation costs of the
8 features, which are summarized in Table 1, are based on

information from the Ontario Ministry of Health (1992) [7].
Each feature is quantized into 5 uniform bins, yielding a set
of 8 × 5 = 40 possible observations, i.e., |O| = 40. Each
instance has a diagnostic result of either “healthy” or “dia-
betes”, which are referred to class 1 and class 2 in our results.
The 768 instances are randomly split into a training set of
512 instances and a testing set of 256 instances. For each ex-
perimental setting, we perform 10 independent trials of the
random split and generate the mean and standard deviation of
the results from the 10 trials.

Table 1. Observation Cost of the Pima dataset

Feature Index Feature Description Cost
1 number of times pregnant $1.00
2 glucose tolerance test $17.61
3 diastolic blood pressure $1.00
4 triceps skin fold thickness $1.00
5 serum insulin test $22.78
6 body mass index $1.00
7 diabetes pedigree function $1.00
8 age in years $1.00

There are 10 actions (i.e., |A| = 10), including 8 obser-
vation actions and 2 prediction actions. We consider three
configurations of internal states for the two classes. In the
first configuration, class 1 has 6 internal states and class 2 has
5; in the second configuration, both classes have 10 internal
states; in the third configuration, both classes have 1 inter-
nal state, which is the naive Bayes case. For a given state
configuration, the reward function R(s, a) is constructed as
follows: when action a is one of the 8 observation actions,
R(s, a) = −(cost of xa) regardless of s; when action a is one
of the 2 prediction actions, R(s, a) = $50 if s ∈ Sa (correct
prediction) and R(s, a) = −λ if s /∈ Sa (false prediction),
where λ is the cost of a false prediction. We vary λ in the
range [$0, $200] and present each result as a function of λ.

The state transition probabilities involving the terminal
state are computed analytically as in Section 2.2. The remain-
ing entries of T a

ss′ as well as Ωos are estimated from the train-
ing data set. For each training instance, the 8 observations (of
8 features), denoted o1, o2, · · · , o8, are randomly permutated
to produce 20 permutated versions of {(a0o1), (a1o2), · · · ,
(a7o8)} (where a0 = 1, a1 = 2, · · · , a7 = 8). The 512 train-
ing instances yield 512 × 20 permutations in total, which are
used to estimated T a

ss′ and Ωos. The PBVI [5] is used to learn
the policy.

In testing, the policy is followed until a prediction action
is selected and executed to make s transit to the terminal state
to complete the present prediction phase. We compute three
performance indexes at the end of each prediction phase: cor-
rect classification rate, observation cost accumulated, and fea-
ture repetition rate. Assume that at the end of a prediction
phase, n observations are made of m < n features (some fea-
tures are observed more than once), then the feature repetition
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Fig. 3. Correct classification rate as a function of false prediction
cost. The mean and error bars are generated from 10 independent
trials of random split of training and test instances.
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Fig. 4. Observation cost averaged over test instances, as a function
of false prediction cost. The mean and error bars are generated from
10 independent trials of random split of training and test instances.
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Fig. 5. Feature repetition rate averaged over test instances, as a
function of false prediction cost. The mean and error bars are gener-
ated from 10 independent trials of random split of training and test
instances.

rate is computed as (n − m)/n.
The results obtained on the Pima data are summarized in

Figures 3, 4, and 5. In each of the figures, black solid line de-
notes RDBC with 10 internal states for each class, red dashed
line denotes RDBC with 6 internal states for class 1 and 5 in-
ternal states for class 2, green dotted line denotes the RDBC
with 1 internal state for each class (the naive Bayes case).

Figures 3 and 4 show that, with a larger number of in-
ternal states for each class, higher correct classification rates
are achieved at lower observation costs. This striking com-

parison can be explained by Figure 5, which shows that with
increased internal states, the feature repetition rate is reduced.
In the Pima data set, the features are noise free, so there is no
sense in observing a given feature multiple times. The only
reason that could lead to repetitive observation of the same
feature is that the classifier is memoryless and does not re-
member that it has observed a feature before. It is obvious
that a single state for each class does not provide memory to
the classifier and therefore the naive Bayes classifier has the
highest feature repetition rate. In contrast, the RDBC with 10
states for each class has the best memory, which gives it the
lowest feature repetition rate. Repetitively observing the same
feature is harmful in the Pima data: it increases cost and yet
provides no new information to improve classification. This
explains Figures 3 and 4.

4. CONCLUSIONS

We have presented a reward-directed Bayesian classifier (RD
BC) that preserves the feature dependence in its internal states.
The proposed RDBC is formulated as a POMDP. The results
on a diabetes dataset show the RDBC with a moderate num-
ber of states significantly improves over the naive Bayes clas-
sifier, both in prediction accuracy and observation parsimony.
It is also demonstrated that the RDBC performs better by us-
ing more states to increase its memory.
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