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ABSTRACT

We propose in this paper the normalized Minimum Error 

Entropy (NMEE). Following the same rational that lead to 

the normalized LMS, the weight update adjustment for 

Minimum Error Entropy (MEE) is constrained by the 

principle of minimum disturbance. Unexpectedly, we 

obtained an algorithm that not only is insensitive to the 

power of the input, but is also faster than the MEE for the 

same misadjustment, and also that is less sensitive to the 

kernel size. We explain these results analytically, and 

through system identification simulations.  

1. INTRODUCTION 

Information Theoretic Learning has become quite popular in 

recent years with the introduction of smooth sample 

estimators of entropy as proposed by Principe and 

collaborators [1],[2]. The nonparametric entropy estimator 

is based on Renyi’s quadratic entropy, which can be applied 

directly to data collected from experiments and without 

imposing any a priori assumptions about the underlying 

probability density function (PDF). The goal of entropy in 

supervised learning follows the MSE framework. Given a 

set of input-desired signal pairs, the entropy of the error 

over the training dataset is minimized. The procedure is 

called Minimum Error Entropy (MEE) [3]. Extensive 

comparisons have already been done between MEE and 

MSE techniques by Erdogmus [2],[4] and this is not the 

goal of this paper.  

The MEE algorithm requires a priori knowledge of the 

input process statistics (power and dynamic range) to select 

the learning rate  for stability and convergence and the 

kernel size for good results. Since this knowledge is usually 

unavailable, the step size is normally estimated prior to 

beginning the adaptation process for a given misadjustemnt 

or speed of convergence, and the kernel size is estimated by 

Silverman’s rule [5] or similar heuristics [2]. Changes in 

stepsize or kernel size if the input power fluctuates should 

be done for optimal performance, but are seldom performed 

leading to sub-optimal performance. The purpose of the 

paper is to propose an enhanced MEE algorithm where the 

selection of  will be independent of the input power and 

where the effect of the kernel size will be minimized. When 

the MEE algorithm is modified in this manner, we refer to 

this as the normalized Minimum Error Entropy 

(NMEE).The paper is organized as follows. Section 2 

summarizes the concept of MEE. We introduce NMEE 

derived from the solution of the constrained optimal 

solution and stability of NMEE in section 3. Section 4 deals 

with simulation results and finally we conclude in section 5. 

2. SUMMARY OF MINIMUM ERROR ENTROPY 

Suppose that the adaptive system is an FIR structure with a 

weight vector  The error samples are 

, where is the desired response, 

and  is the input vector. The error PDF at a point e  is 

estimated using Parzen window estimation with a kernel 

function as 
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where )(k is kernel function with a kernel size . So, 

Renyi’s quadratic entropy estimator for a set of discrete data 

samples becomes [1]: 
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Minimizing the entropy  is equivalent to maximizing 

the information potential  since the log is a monotonic 

function. 
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       For online training methods, the information potential 

can be estimated using Stochastic Information Gradient 

(SIG) as shown in (4), where the sum is over the most 

recent L samples at time  [6]. Thus for a filter order of 

length 

n

M , the complexity of MEE is equal to  per 

weight update,  
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where , for )()()()( inidie T
uw niLn . Thus the 

MEE update is  
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where assuming a Gaussian kernel the gradient is, 
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3. NORMALIZED MINIMUM ERROR ENTROPY 

3.1. NMEE as the solution to a constrained optimization 

problem

We will derive NMEE by analogy with NLMS, i.e.  as a 

modification of the ordinary MEE in light of the principle of 

minimal disturbance [7]. The criterion of NMEE is 

formulated as constrained optimization:  
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where  is the posterior error, 

and (8) translates the constraint of optimal performance in 

terms of the information potential. 
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 When we solve the above constrained optimization 

problem using the method of Lagrange multipliers and 

applying the stochastic nature of the estimator, we finally 

get 
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where  is the a priori error, and  is 

the normalized stepsize which can be proven to be between 

0 and 2 for stability. In this update, there is an added 

difficulty because estimating  requires . We 

propose to substitute  by  because we aim to 

minimize
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following weight update for NMEE, 
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3.2. Discussion of the NMEE solution

It is instructive to examine the Lagrangian and write it as  
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 First, recall that in the LMS, the Lagrangian only 

depends upon the error and the norm of the input. For MEE 

we see that it depends not only on the error and the norm of 

the input, but also on the kernel size through the information 

force [1] given by 
1

2
)}()()){()((

2

1 n

Lni

pppp ieneiene
L

.        (12) 

This means that we can expect NMEE to be less 

dependent, when compared to the MEE algorithm, not only 

to the input power, but also to the kernel size because of the 

normalization by the information force.  

Furthermore, we see that an extra error term appears in 

the numerator of the update which indicates that the speed 

of convergence will likely change. All these aspects follow 

from the particular constraint the MEE solution requires and 

also from the nonlinear nature of the error gradient. 

4. SIMULATION AND DISCUSSION 

In the simulations, we will experimentally verify the 

different adaptation performance of the newly introduced 

NMEE with respect to MEE. Simulations are particular 

useful in this case because the differences between the two 

algorithms are not as easy to translate to practical measures 

of convergence rate and misadjustment as in the LMS case. 

We consider two kinds of plant identification models, a 

moving-average model (MA), and an autoregressive model 

(AR). We analyze these problems using the stochastic 

information gradient (SIG). The adaptive weights were 

initialized to zero at each instance. Further, in order to make 

the result independent of the initial conditions, we 

performed Monte-Carlo simulations with 100 random inputs. 

4.1. Example 1: Dependence on Input Power 

We consider a moving-average model with transfer function 

given by (order = 9) [8]  
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The FIR adaptive filter is selected with equal order. A 

standard method of comparing the performance in system 

identification is to plot the weight error norm since this is 

directly related to misadjustment [8]. In each case the power 

of the weight noise (averaged over 125 samples) was plotted 

versus the number of iterations performed. The input to both 

the plant and the adaptive filter is white Gaussian noise. In 

the first experiment, an unit power input was used (1P), 

whereas in the second experiment input with 10 x power (P) 

was selected. We choose a proper kernel size by using 

Silverman’s rule in MEE ( 7.0mee ) and NMEE 

( 1nmee ), respectively. 

In this perfect identification, we can exactly track the 

output of the plant. Fig.1 shows the plot of the weight error 
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norm for a moving average model. We choose as large a 

step size as possible within the range of MEE stability. 

For the unit input power case, both MEE and NMEE 

converge in 190 iterations with basically the same 

misadjustment ( or below). To guarantee the stability 

of MEE adaptation for 10x input power, the step size is 

chosen almost 10 times smaller, while it remains at the same 

value for NMEE. NMEE just takes 190 iterations to 

converge with a misadjustment of  as compared 

to MEE which takes nearly 700 iterations with a 

misadjustment of . We can therefore conclude 

that the NMEE is insensitive to the input power, as expected. 

We also present in Fig 1 the convergence of the NLMS for 

comparison purposes (misadjustment of ), and 

conclude that the NMEE is faster than the NLMS.
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4.2. Dependence on Kernel Size and Speed of Adaptation 

Selecting a proper kernel size is one important factor 

because it influences the performance of the MEE algorithm. 

A proper kernel size depends on the error statistics [2]. The 

effect of kernel sizes on both MEE and NMEE is shown in 

Fig. 2 and 3. Fig. 2 shows the weight error power curves 

with different kernel sizes when the input data is white 

Gaussian with zero mean, 10x unit variance and with an 

eigenvalue spread ratio (S) of 1. Fig. 3 shows the results in 

the case of colored Gaussian input, whose variance is 6 and 

eigenvalue spread ratio (S) is 550. We observe that the 

performance of MEE is sensitive to the kernel size and this 

sensitivity increases when the eigenvalue spread of the input 

signal increases. However, NMEE shows a much more 

uniform performance with different kernel sizes even when 

the input has a large dynamic range. The misadjustment of 

NMEE in the worst case is almost the same as that of MEE 

in the best case. Furthermore, the kernel size of 0.7 and 1 

for MEE and NMEE respectively are found to be optimal, 

giving the lowest misadjustment of  and 

 in the case when S=1 and  and 

when S=550. 
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Fig 1. Average weight error power of three 

algorithms (MEE, NMEE and NLMS) for MA(9) with 

different input powers (P=1, 10)
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 Fig 2. Average weight error power for MA(9) with 

different kernel sizes, solid lines – NMEE, dashed line-

MEE, in the case of white Gaussian input with variance 

10, eigenspread S=1. (Kernel Sizes of left to right 

dashed lines:  0.7, 1, 1.3, 1.6, 2)
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Fig 3. Average weight error power for MA(9) with 

different kernel sizes, solid lines – NMEE, dashed line-

MEE, in the case of colored Gaussian input with 

variance 15,  eigenspread S=550. 
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 Fig 4. Average weight error power of two 

algorithms (MEE and NMEE) for AR(1) in case of best 

results

 Another important aspect of these experiments is the 

different speed of convergence between the MEE and the 
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NMEE. Fig. 2 clearly shows that there are two sets of 

curves, one for each algorithm. We could interpret this by 

hypothesizing that the learning rates are not compatible with 

the same misadjustment. However, a closer look shows that 

the NMEE is faster than the MEE and provides a smaller 

misadjustment (  versus ). Therefore 

the NMEE converges faster than the MEE. 
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4.3. Example 2: AR(1) 

As a second case study, we select for the unknown plant a 

first order autoregressive model, 
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 The unknown system  is approximated by a 

moving average model with 16 taps. Two sets of white 

Gaussian noise inputs with unit variance and 10 x unit 

variance are applied to both the plant and the adaptive filter. 

We choose a proper kernel size for MEE (

)(2 zH

7.0mee ) and 

NMEE ( 1nmee ), respectively.  

 Fig. 4 shows the best results for MEE and NMEE of the 

average weight error power to identify the first order 

autoregressive model. The 10 x input variance produces the 

larger misadjustment of  , while the unit input variance 

has a misadjustment of . We can observe that the MEE 

with 10 x input variance converges after 1300 iterations. 

The NMEE results are very different. Indeed, the curves for 

the unit and 10 x power input are very close to each other, 

and converge within 400 iterations. These results show that 

even when the identification is done with a residual error, 

the NMEE converges faster and is basically independent of 

the input power.
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5. CONCLUSIONS 

We have presented a new algorithm, the normalized 

Minimum Error Entropy (NMEE) by minimizing the weight 

change subject to the constraint of optimal information 

potential. Despite the similarity of the derivation with the 

LMS, NMEE is quite different from MEE, and performs 

better with respect to two major points: it is less sensitive to 

the kernel size, and converges faster. 

 The goal of achieving independence of the stepsize on 

the input power is corroborated in all the experiments 

performed with the NMEE. This is a convenience and may 

be important when handling nonstationary signals with large 

dynamic range. But the advantage of the NMEE over the 

MEE does not stop here. Indeed, NMEE is less sensitive to 

the kernel size, which is known to affect the performance of 

the MEE. This is a major advantage for ITL algorithms 

because it helps the selection of the extra parameter 

introduced by this class of cost functions. The second aspect 

is the faster convergence of the NMEE versus the MEE. We 

claim this feature because we controlled the misadjustment 

of each algorithm and found out the NMEE converges faster 

for the same misadjustment when compared with the MEE. 

The reason why NMEE rate of convergence outperforms the 

MEE should be thoroughly investigated theoretically, 

because it is unexpected.

For the problems tested (linear models), NMEE also 

outperforms the NLMS convergence rate as briefly 

presented in Fig 1. One might wonder why use another 

criterion when the optimal weight solution is the same as 

MSE. Our previous results show that the MEE optimal 

solution is superior in the identification of nonlinear plants 

when the model system is nonlinear [3], but it defaults to the 

MSE solution when the model is linear [2].  However, since 

the goal of this paper is to compare the dynamics of learning, 

we thought it was more appropriate to restrict the analysis to 

liner models since they converge to the same optimal weight 

vector.
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