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Simon J. Godsill and Gary (Ligong) Yang

Signal Processing and Communications Laboratory
Cambridge University Engineering Department

Cambridge, CB2 1PZ, UK
{sjg, ly221}@eng.cam.ac.uk

ABSTRACT

In this paper we present methods for estimating the parameters of
a class of non-Gaussian continuous-time stochastic process, the
continuous-time autoregressive moving average (CARMA) model
driven by symmetric α-Stable (SαS) Lévy processes. In this chal-
lenging framework we are not able to evaluate the likelihood func-
tion directly, and instead we use a disctretized approximation to the
likelihood. The parameters are then estimated from this approxi-
mating model using a Bayesian Monte Carlo scheme, and employ-
ing a Kalman filter to marginalize and sample the trajectory of the
state process.

An efficient exploration of the parameter space is achieved
through a novel reparameterization in terms of an equivalent me-
chanical system. Simulations demonstrate the potential of the
methods.

1. INTRODUCTION

Many physical phenomena are more accurately modeled in contin-
uous time than by discrete time approximations, since the under-
lying physics are typically expressed using differential equations.
Moreover, a direct continuous time treatment of a problem is of-
ten more flexible: it is conceptually straightforward to deal with
irregularly sampled data, missing data, or changes in sampling
frequency, for example. Here we consider the continuous-time
ARMA (CARMA) model, which has received much attention in
the literature, especially in the Brownian-driven (Gaussian) case
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Parameter estimation for such mod-
els is more challenging than in the corresponding discrete time
classes of process, since the likelihood function is nonlinear in the
parameters. In the Gaussian case one can find likelihood based
approaches [5, 6, 1] or Bayesian approaches using Markov chain
Monte Carlo (MCMC) [7, 8, 9, 10].

However, the fundamental assumption of Gaussianity is highly
idealized for many real-world processes, which exhibit outliers
and jumps. As a more realistic alternative we may introduce
non-Gaussianity into the underlying driving processes by replac-
ing the Brownian motion with a Lévy process (e.g. [11, 12, 13]).
The existence of general Lévy-driven CARMA processes has been
proven by Brockwell [11]. Here we investigate the possibilities for
Bayesian parameter estimation problems using MCMC methods.
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2. CARMA MODELS

The governing equation for a continuous-time AR (CAR) process
in state-space form is (X(i)(t) denotes the i-th derivative of the
signal X(t))

dX(t) = AX(t)dt + hdW (t),

X(t) =
�
X(0)(t), X(1)(t), ..., X(P−1)(t)

�T

(1)

where
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0
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σe

�
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and the driving noise process W (t) is a non-Gaussian Lévy pro-
cess. This stochastic differential equation has a simple solution:

X(t) = eAtX(0) +

� t

0

eA(t−u)hdW (u) (2)

We are interested in discrete observations of the CAR model
at discrete time instants {ti}, Y (ti) = bX(ti) + vi, vi ∼
N (0, λσ2

e), i = 1, 2, ..., Nwith b = [b0, b1, ..., bP−1].
The resulting process {Y (t)} is termed a CARMA process

with parameters a = [a1 a2 ... aP ], b and σe. In the case where
W (t) is Brownian motion these involved convenient properties
mean that the likelihood function p(y|a,b, σe) can be evaluated
exactly using the Kalman filter [5, 14]. However, for non-Gaussian
cases the likelihood cannot in general be computed exactly and we
will consider approximation schemes. For the purposes of illustra-
tion we will consider b to be fixed in this paper, and the extension
of the methods to estimate b is straightforward, following the same
principles as described below.

2.1. Mechanical System Reparametrization

Here we introduce a convenient and physically interpretable repa-
rameterization of the CARMA model in terms of mechanical sec-
ond order linear systems. The AR filter polynomial, for example,
can be factorized into its second order sections, such that (for P
even),

sp +

P	
i=1

ais
P−i =

P/2

i=1

s2 + 2sciωn,i + ω2
n,i
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where ci > 0 is the damping factor and ωn,i > 0 is the natural
frequency of the i-th second order section. With P odd we can
extend the representation with an additional first order section. The
MA part can similarly be factorized into second order sections in
cases where b is also to be estimated. We note that there is a one-
to-one mapping from {ci, ωn,i} to a and from here on we will
refer only to (c, ωn) = {ci, ωn,i} and not to a.

With this parametrization it is more straightforward to assign
priors and to check for stability of the ARMA filter; moreover the
proposed MCMC algorithms are found to converge faster owing to
a more independent parameterization of the model.

For the Bayesian analysis we assign independent priors to the
mechanical system parameters as follows (the index i is omitted
for the sake of clarity):

p(ωn) =

�
1/π , ωn ∈ {0, π}
0 , otherwise

(3)

and the prior distribution for damping factor c is designed to show
some preference for smaller c (i.e. more resonant systems):

p(c) =

��
�

2.5(−0.5220) , c ∈ {0, 0.5220}
2.5(−c) , c ∈ {0.5220,∞}
0 , otherwise

(4)

3. NON-GAUSSIAN DRIVING PROCESS

Let us now consider the non-Gaussian driving noise process
{W (t)}. We would like to capture the observed heavy-tailed be-
haviour (shocks/impulses) in many engineering processes while
retaining some degree of analytic simplicity. One possibility
would be a finite activity pure jump process, as popular in fi-
nance applications see e.g. [12, 13], although such processes
lead to some technical difficulties in estimation. A natural al-
ternative is the α-stable Lévy process [15] in which the incre-
ments dW (t) are modeled as independent α-stable random vari-
ables. Such a process allows for a wide range of heavy-tailed be-
haviour and has self-similarity properties. In discrete time settings
α-stable processes have found application in a number of areas,
see e.g. [16, 17, 18, 19]. The α-stable family of distributions
Sα(γ, β, δ) can be identified by means of the characteristic func-
tion (see [15, 20, 16] for reference), which depends on four pa-
rameters: α ∈ (0, 2], measuring the tail thickness (thicker tails
for smaller values of the parameter), β ∈ [−1, 1] determining the
degree and sign of asymmetry, γ > 0 (scale) and δ ∈ � (loca-
tion). Closed-form density functions do not exist in general, but
simulation of random variables is relatively straightforward (see
[21, 20]), which implies that Monte Carlo strategies are a feasible
approach.

We will limit ourselves here to the symmetric α-stable (SαS)
family with β = 0. The SαS Lévy process {W (t)} is defined as
follows [15]:

1. W (0) = 0 (almost surely)

2. {W (t)} has independent symmetric α-stable incrememts

3. W (t) − W (s) ∼ Sα((t − s)1/α, 0, 0), (t > s)

The SαS Lévy process has a number of attractive properties
for analysis and estimation purposes. In particular, compared with
other distributional assumptions for the Lévy process, the stable
properties of this distribution imply that increments at all time
scales are also α-stable, with known parameters. This fact will be

employed in the design of our inference procedures. Nevertheless,
the non-Gaussian and continuous-time nature of the process sug-
gest substantial challenges in the optimal estimation of parameters
for Lévy-driven CARMA models.

4. INFERENCE METHODOLOGY

One suitable objective for inference would be evaluation of the
likelihood function p(y|a,b, σe), or in a Bayesian setting we can
explore the posterior distribution p(a,b, σe|y). These distribu-
tions are available analytically for the Gaussian (i.e. Brownian-
driven) case [5], but not in general for the SαS case. We adopt
a discretization scheme to approximate the process at very fine
time-scale. This approximation scheme then lends itself well to a
data augmentation Monte Carlo (MC) approach which allows MC
estimation of the likelihood, or exploration of the posterior distri-
bution using Markov chain Monte Carlo (MCMC) methods.

4.1. Approximation Scheme

The challenge here is to determine (approximately) the probability
distribution of X(t) in (2). X(t) has a multivariate SαS distri-
bution, following from the properties of stable stochastic integrals
[15]. However, an exact characterization of this distribution which
is amenable to inference procedures has remained elusive to date,
except for the first order case, P = 1. Considering first P = 1, re-
sults for stochastic integration of stable processes (Property 1.2.1,
Page 10 of [15]) lead to:

� t

0

ea(t−u)hdW (u) ∼ Sα((

� t

u=0

(ea(t−u))αdu)1/α, 0, 0)

= Sα((
eatα − 1

aα
)1/α, 0, 0) (5)

This exact result provides a possible benchmark for testing the
convergence of the proposed approximation method outlined be-
low.

For P > 1, instead of a direct consideration of the multivariate
distribution, we propose to discretize and approximate the integral
in (2) as follows

� t

0

eA(t−u)hdW (u) =

M−1�
j=0

� (j+1)δt

jδt

eA(t−u)hdW (u)

≈
M−1�
j=0

eA(t−jδt)h

� (j+1)δt

jδt

dW (u)

=

M−1�
j=0

eA(t−jδt)h δWj (6)

with δWj = W ((j + 1)δt)−W (jδt), where δt = t/M is some
‘sufficiently’ small time step. Such an approximation will lead to
convergence in distribution as δt tends to zero, see Page 376-390,
Section 7.12 and 7.13 in [15] and [20, 22] for theoretical analysis
of related distcretizations of diffusion processes.

In order to perform efficient inference in this approximat-
ing model the special properties of the SαS Lévy process are
utilized. First, we know that the increments δWj are inde-
pendently distributed as δWj ∼ Sα((δt)

1/α, 0, 0). δWj ∼
Sα((δt)

1/α, 0, 0). Moreover there is a well known representa-
tion of δWj as a scale mixture of normals (see Page 20 Property
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1.3.1 with α′ = 2 of [15]) that enables us to write the follow-
ing equivalent form for δWj as δWj ∼ N(0, 2σ2

j δ
2/α
t ), σ2

j ∼
Sα/2((cos (πα/4))2/α , 1, 0), where Sα/2(., 1, 0) is the fully
skewed positive stable distribution. Essentially this means that
δWj can be equivalently represented as a zero mean Gaussian
whose variance is random, unknown, independent, and distributed
as a positive stable random variate. Conditioning now on the se-
quence of variance parameters {σ2

j , j = 0, 1, 2, ..., M − 1}, we
have, approximately:

X(t) ∼ N
�
�e

At
X(0),

M−1�
j=0

2σ
2
j δ

2/α
t e

A(t−jδt)
hh

T
e

A(t−jδt)T

�
� (7)

Moreover the approximation allows us to write an augmented
dynamical model at the δt scale:

p(X((j+1)δt)|X(jδt), σ
2
j ) ≈ N

�
e

Aδt
X(jδt), 2σ

2
j δ

2/α
t e

Aδt
hh

T
e

AT δt

�
(8)

This augmented dynamic model, combined with the likelihood
model (2), defines a state-space model, from which the parame-
ters may be inferred. Note that we are introducing an additional
M parameters {σ2

j } into the model which will need to be sam-
pled as part of the procedure. Discretization at a fine time-scale
of the type proposed here can be expected in general to cause a
dramatic slow-down in algorithmic convergence, with the sampler
eventually becoming ‘stuck’ altogether (‘reducible’). Such effects
were observed in [23, 24]. Here, however, the entire sample path
of the process is integrated out using the Kalman filter, and we
only condition on the less critical scaling parameters {σj}. Thus
we can expect much less of a harmful effect on convergence in our
approach. This approach, while distinct, can be compared with
the discretization method of [25] in which a reducible sampler is
prevented by joint sampling of sample paths and parameters.

4.2. Computational Methods

The approximating state space model of (2) combined with dy-
namic model (8) are suitable for inference by Monte Carlo
methods. As the basic building block for the algorithms
we can use a Kalman filter/simulation smoother to compute
the conditional likelihood p(y|ωn, c,{σ2

j }) (see e.g. [14],
prediction error decomposition) and to draw random samples
from the distribution p(x,σ2

e |y, ωn, c) (see [26, 27], simula-
tion smoother), where y = [Y (t1), Y (t2), ..., Y (tN )] and
x = [X(0),X(δt),X(2δt), ...,X(Mδt)]. In order to achieve
this we have assumed additionally a prior distribution p(σ2

e) =
IG(αe, βe), where IG(·) denotes the standard inverted gamma
prior for a variance component.

A schematic overview of the proposed MCMC algorithm
is now given (all steps are straightforward applications of
Metropolis-Hastings or Gibbs Sampling [28]):

• Randomly initialize parameters: ω
(0)
n , c(0), {σj(i)

(0)},
sample (x(0), σ

2(0)
e ) ∼ p(x,σ2

e |y, ω
(0)
n , c(0), {σj(i)

(0)})
• For k = 1 to Nits

– Sample ω
(k)
n and c(k) from p(ωn, c|y, {σj}(k−1))

using a mixture of Metropolis-Hastings updates (ran-
dom walk plus an FFT-based independence sampler).

– Sample (x(k), σ
2(k)
e ) ∼ p(x,σ2

e |y, ω
(k)
n , c(k), {σj(i)

(k−1)})
(simulation smoother)

– Sample {σ2(k)
j } from p({σj

2}|x(k), σ
2(k)
e ,y, ω

(k)
n , c

(k)
)

by a specialized hybrid rejection sampler (see [18,
19]).

• end

5. RESULTS

Extensive numerical experiments have been carried out using
MatLab to validate our approach. In order to test convergence
of the approximation as M increases for P = 1, 200000 random
samples were generated with a1 = 0.5, α = 1.1 and various de-
grees of augmentation. In these simulations, M denotes the factor
by which we augment the time axis, rather than the total num-
ber of time points (e.g. M = 10 corresponds to 10N uniformly
spaced time points between t1 and tN . The corresponding squared
errors are shown in Fig. 1 (a). Furthermore, we have examined
a wide range of CARMA models with different parameters. The
outcomes so far are very promising, as shown in a typical result
for a 4-th order CAR model with α = 1.1 (very heavy-tailed), in
Fig. 1. Convergence is very rapid for all parameters (Fig. 1 (b)
and (c)), and as M increases we see empirically a convergence of
the estimated distributions, as shown in kernel density plots (Fig.
1 (d)-(f)).
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Fig. 1. Experimental results
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6. CONCLUSION

In this paper, we have proposed Bayesian inference approaches for
non-Gaussian Lévy-driven models. A discretisation scheme was
found very effective in parameter estimation for the model using
MCMC. A mechanical system reparameterization further provides
significant performance improvement and allows straightforward
stability checking and prior assignment. Note that our basic pro-
cedure is readily extended to schemes that sample the MA param-
eters and to cases of unknown model order, as we have demon-
strated in the Gaussian case [10].
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