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ABSTRACT

Continuous-time marked point processes appear in many areas of
science and engineering including queuing theory, seismology, neu-
roscience and finance. In numerous applications, these point pro-
cesses are unobserved but actually drive an observation process. Here,
we are interested in optimal sequential Bayesian estimation of such
partially observed point processes. This class of filtering problems
is non-standard as there is typically no underlying Markov structure
and the likelihood function relating the observations to the point pro-
cess has a complex form. Hence, except in very specific cases it is
impossible to solve them in closed-form. We develop an original
trans-dimensional Sequential Monte Carlo method to address this
class of problems. An application to partially observed queues is
presented.

1. INTRODUCTION

Point processes have found many applications in many areas of sci-
ence including queuing theory [2], nuclear science [1] [17], seismol-
ogy [5] and finance [16]. When the point process is directly ob-
served, there has been much work on developing efficient statistical
methods to perform inference. However, in many realistic applica-
tions the point process of interest is unobserved. Estimation of such
partially observed point processes is much more complicated. In par-
ticular, in this case “the number of unknowns” (the number of points)
“is something you don’t know” [13]. In a Bayesian framework,
analysis of such problems has become possible thanks to the intro-
duction of trans-dimensional Markov chain Monte Carlo (MCMC)
methods [13]; e.g. [1]. Unfortunately, these iterative batch methods
are not adequate when massive datasets and/or real-time constraints
are present.

We present here an original simulation-based approach for on-
line Bayesian inference in partially observed point processes. Our
methodology relies on Sequential Monte Carlo (SMC) methods in
which the sequence of posterior distributions of interest is approxi-
mated by a cloud of random samples termed particles which evolve
over time using sampling and resampling mechanisms. SMC is now
routinely used to solve optimal filtering problems in non-linear non-
Gaussian state-space models [10]. However, we emphasize that the
filtering problems addressed here are of a completely different nature
and cannot be solved using standard SMC methods. In this article,
we develop an efficient trans-dimensional SMC method to achieve
this. Simple trans-dimensional algorithms have appeared recently
either implicitly [3] [6] [15] or explicitly [4] [18] in the literature.
Here we make use of the fact that trans-dimensional SMC meth-
ods are actually a subset of SMC methods developed recently for

static inference. Following the general framework detailed in [7] [8],
we propose a principled way to design efficient sampling strategies
within the trans-dimensional SMC framework. Our methodology al-
lows the user to design and combine complex moves in an optimal
way.

We demonstrate our methodology on optimal filtering for queues.
The problem consists of reconstructing the state of a queue (number
of customers waiting, number of dropouts etc.) based uniquely on
departure data. Under restrictive assumptions on the interarrival and
service times distributions, this problem admits a closed-form solu-
tion whose complexity grows cubically with time [12]. However as
soon as these assumptions are relaxed, there is no longer an analytic
solution [14]. Our methodology allows us to address realistic queu-
ing models including general arrival and service times distributions,
random dropouts and queues of finite capacity.

The paper is organized as follows: In Section II we formalize
the optimal filtering problem. In Section III we describe the SMC
sampler methodology and its applications to the trans-dimensional
case. In Section IV we describe the queuing application.

2. OPTIMAL FILTERING FOR PARTIALLY OBSERVED
POINT PROCESSES

2.1. Point Process Models

We consider the following marked point process

M (dτ, du) =
X
k≥1

δτk,Uk
(dτ, du)

where {τk}k≥1
with τk > τk−1 ≥ 0 are the random occurrence

times and {Uk}k≥1
the associated random marks with Uk taking

values in U .

The process {τk}k≥1
admits the following joint probability den-

sity

fτ1:k
(τ1:k) = fτ1

(τ1)

nY
j=2

f
τj |τ1:j−1

(τj | τ1:j−1) .

For example, if the arrival process {τk}k≥1
is a Poisson process of

intensity λ then

f
τj |τ1:j−1

(τj | τ1:j−1) = λ exp (−λ (τj − τj−1)) .

For the sake of simplicity we will assume that the marks {Uk}k≥1

are independent of {τk}k≥1
and independent and identically dis-

tributed according to a density fU (·) . However, it is possible to
consider more complex models if necessary.
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2.2. Likelihood Function

The process M (dτ, du) is unobserved and we only have access at
time t to a (possibly random) number of observations denoted Yt.
We assume here that the likelihood function satisfies

p
“

Yt| {τk, uk}k≥1

”
= p (Yt| τ1:kt , u1:kt) (1)

where Kt is an integer-valued stopping time satisfying Kt′ ≥ Kt

(almost surely) for t′ > t. Broadly speaking a stopping time is a
random variable determined entirely by Yt and {τk, Uk}k≥1

. The
stopping time definition depends on the problem of interest.

Example. Noisy Shot Noise Process. Consider the discrete time
observations {Y (tn)}n≥1

Y (tn) =

Z
uh (tn − τ) M (dτ, du) + b (tn)

where b (tn)
i.i.d.
∼ N

`
0, σ2

´
and h (t) = 0 for t < 0. In this case we

have Yt = {Y (tn) : tn ≤ t} and

Kt = arg max
k

{k : τk ≤ arg max {tn : tn ≤ t}} .

Example. Randomly Delayed Process. Consider the observation
process

Y (dt) =
X
k≥1

δτk+Uk
(dt)

where {Uk}k≥1
are positive random variables then

Kt = arg max
k

{k : τk + Uk ≤ t} .

2.3. Optimal Filtering

We are interested in the optimal estimation of M (dτ, du) given the
observations available at any time t. Hence the posterior distribution
of interest is

p({τk, uk}k≥1
|Yt) ∝ p(Yt| {τk, uk}k≥1

)p({τk, uk}k≥1
).

Clearly it is impossible to estimate this posterior distribution as it
includes an infinite number of variables. Because of (1), it is more
sensible to restrict ourselves to the estimation of p (τ1:kt , u1:kt |Yt).
The variable Kt being an integer-valued stopping time, the distribu-
tion p (τ1:kt , u1:kt |Yt) is defined on a space of the form

U
kDk×Uk

where Dk= {τ1:k : 0 ≤ τ1 < τk < · · · < τk}. Typically, this dis-
tribution does not admit a closed-form. If t was fixed, it would
be possible to approximate this distribution using trans-dimensional
MCMC [13]. However, we are here interested in estimating a se-
quence of posterior distributions

˘
p

`
τ1:ktn

, u1:ktn

˛̨
Ytn

´¯
where

tn−1 < tn.

3. TRANS-DIMENSIONAL SEQUENTIAL MONTE CARLO

Standard SMC methods are algorithms designed to sample from a
sequence of distributions {πn}n≥1

where πn is defined on En and
En = En−1 × Fn; i.e. the spaces are of “increasing dimension”.
Clearly these methods are inadequate in the point process case where
this condition is not satisfied. Indeed in the point process case all dis-
tributions are typically defined on the same space E =

U∞

k=1
Dk ×

Uk but have positive masses only on a subset Sn of E with Sn−1 ⊆
Sn. For example in the shot noise process example described earlier

the posterior distribution p
“
{τk, uk}1≤k≤ktn

˛̨̨
Ytn

”
is defined on

E but its support is restricted to Sn =
U∞

k=1
Dk,tn × Uk where

Dk,tn= {τ1:k : 0 ≤ τ1 < τk < · · · < τk ≤ tn} .

3.1. SMC Samplers

We use interchangeably measures and densities in this section. SMC
samplers are a generalization of SMC methods introduced in [7],
[8]. Essentially if we consider two successive target distributions
πn−1 (xn−1) and πn (xn) defined respectively on two arbitrary (mea-
surable) spaces En−1 and En then SMC samplers methods allow us
to define valid moves between these spaces. We introduce a gen-
eralized Markov kernel Tn : En−1 → B (En) (where B (En)
is a sigma-algebra). Assume Xn−1 ∼ πn−1 and Xn|Xn−1 ∼
Tn (Xn−1, ·) then the marginal distribution of Xn is given by

µn (dxn) =

Z
En−1

πn−1 (dxn−1) Tn (xn−1, dxn) .

When En = En−1 × Fn the Markov kernel Tn is usually built by
introducing qn : En−1 → B (Fn) and setting

Tn (xn−1, dxn) = qn (xn−1, dvn) δ(xn−1,vn) (dxn) .

In this case, it is possible to compute µn (dxn) pointwise (up to a
normalizing constant) and then reweight the resulting particles with
respect to the target distribution of interest using

wn (xn) =
πn (xn)

µn (xn)
=

πn ((xn−1, vn))

πn−1 (xn−1) qn (xn−1, vn)
. (2)

However in the general case it is impossible to compute µn (xn)
pointwise and hence to compute (2). In [7], [8], it is shown how
to weight these particles consistently with respect to πn (xn) with-
out having to compute µn (xn). To this aim we introduce another
Markov kernel Ln−1 : En → B (En−1) and we define the new
incremental weight

wn (xn−1, xn) =
πn (xn) Ln−1 (xn, xn−1)

πn−1 (xn−1) Tn (xn−1, xn)
; (3)

i.e. we are performing importance sampling with a new artificial
target distribution πn (xn) Ln−1 (xn, xn−1) which admits πn (xn)
as a marginal by construction.

Clearly the performance of this method is going to be highly
dependent on the choice of Ln−1. In [7], [8] it is established that the
optimal choice for Ln−1 (with respect to the variance of the weights)
is given by

L
opt
n−1 (xn−1, xn) =

πn−1 (xn) Tn (xn, xn−1)

µn (xn−1)
. (4)

This result is actually intuitive as in this case (3) is equal to (2).
Clearly we cannot use L

opt
n−1 if in practice µn (xn) cannot be eval-

uated pointwise but it suggests that to obtain good performance we
should select Ln−1 as an approximation of L

opt
n−1. The key point is

that even if Ln−1 �= L
opt
n−1 then the algorithm remains theoretically

valid. The price to pay for using some Ln−1 different to L
opt
n−1 is an

increase in the variance of the weights.
When Tn is an MCMC kernel of invariant distribution πn, an

approximation of L
opt
n−1 which will prove very useful in applications

is

Ln−1 (xn−1, xn) =
πn (xn) Tn (xn, xn−1)

πn (xn−1)
(5)

and in this case

wn (xn−1, xn) =
πn (xn−1)

πn−1 (xn−1)
.
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In practice, we are typically interested in using not one single
move but a combination of p moves described by {Tn,m} and se-
lected with probability {αn,m (xn−1)} where m = 1, ..., p. The
total kernel is given by

Tn (xn−1, xn) =

pX
m=1

αn,m (xn−1) Tn,m (xn−1, xn) .

In this case, the reverse artificial kernel should be selected as follows

Ln−1 (xn−1, xn) =

pX
m=1

βn−1,m (xn−1) Ln−1,m (xn−1, xn)

where {Ln,m} are Markov kernels and {βn,m (xn−1)} are proba-
bilities. The importance weight can be computed using (3) but this
is prohibitive if p is large and in this case it can be shown that the
following expression is also valid

wn (xn−1, xn, mn) =

πn (xn) βn−1,mn (xn) Ln−1,mn (xn, xn−1)

πn−1 (xn−1) αn,mn (xn−1) Tn,mn (xn−1, xn)

when at time n the move mn ∈ {1, ..., p} has been selected. In this
case, the expressions for the optimal kernels {Ln−1,mn} and proba-
bilities {βn−1,mn} minimizing the variance of wn (xn−1, xn, mn)
can also be established.

3.2. Trans-dimensional SMC Samplers

We now consider here the trans-dimensional problem appearing for
point processes; i.e. all distributions p

`
τ1:ktn

, u1:ktn

˛̨
Ytn

´
are de-

fined on E =
U∞

k=1
Dk × Uk but their supports Sn are growing

over time; i.e. Sn−1 ⊆ Sn. We propose a combination of vari-
ous generic moves and for ease of presentation we assume here that
αn,mn (xn−1) = αn,mn so that the optimal kernel is equal to (4).
To simplify notation we write ϑ1:ktn

=
`
τ1:ktn

, u1:ktn

´
. We em-

phasize that the applicability of these moves depends on the problem
under study.

Update move. This move consists of using

Tn,update

“
ϑ1:ktn−1

, dϑ
′
1:ktn

”
= δϑ1:ktn−1

`
dϑ

′
1:ktn

´
.

This move cannot be used alone if Sn−1 ⊂ Sn as the support of the
resulting importance distribution would not include the support of
the target.

Optimal updating moves. In light of new observations, the gen-
eral framework proposed earlier allows us to update say the last L

points

Tn,optupdate

“
ϑ1:ktn−1

dϑ
′
1:ktn

”
= δϑ1:ktn−1

−L

“
dϑ

′
1:ktn−L

”
qn

“
ϑ1:ktn−1

−L, dϑ
′
ktn−L+1:ktn

”
.

The optimal importance distribution qn minimizing the conditional
variance of the importance weights is given by

p
“

ϑ
′
ktn−L+1:ktn

˛̨̨
Ytn , ϑ1:ktn−1−L

”
.

We cannot typically sample from it but we can approximate it by saybp. In this case, it is also possible to approximate (4) and the weight

(3) is given by

p
“

ϑ1:ktn−L
, ϑ′

ktn−1−L+1:ktn

˛̨̨
Ytn , ϑ1:ktn−1−L

”
p

“
ϑ1:ktn−1

˛̨̨
Ytn−1

”

×
bp “

ϑktn−1−L+1:ktn−1

˛̨̨
Ytn−1

, ϑ1:ktn−1−L

”
bp “

ϑ′
ktn−L+1:ktn

˛̨̨
Ytn , ϑ1:ktn−1−L

” .

This strategy is very useful when the discrepancy between successive
distributions is high [11].

Local moves. In this case we perturb a parameter by some incre-
ments on a discrete grid; say if we want to modify ϑktn−1

Tn,local

“
ϑ1:ktn−1

, dϑ′
1:ktn

”
=

δϑ1:ktn−1

“
dϑ′

1:ktn−1

”
. 1

M

MP
i=1

δϑktn−1
+γi

“
dϑ′

ktn

”
.

In this case it is possible to compute (2) [hence (4)].
Birth move. In a birth move, we propose to add one or several

points to the current state. For ease of presentation, we suppose here
that we just add some points at the end of the current path when
ktn−1

< ktn . We have

Tn,birth

“
ϑ1:ktn−1

, dϑ′
1:ktn

”
=

δϑ1:ktn−1

“
dϑ′

1:ktn−1

”
qn

“
ϑ1:ktn−1

, dϑ′
ktn−1

+1:ktn

”
.

In this case it is also possible to compute (2) [hence (4)]. The pro-
posal qn minimizing the conditional variance of the weight is given
by

p
“

ϑ
′
ktn−1

+1:ktn

˛̨̨
Ytn , ϑ1:ktn−1

”
.

Death move. Assume one wants to remove one point; say the
last one we added for ease of presentation then

Tn,death

“
ϑ1:ktn−1

, dϑ
′
1:ktn

”
= δϑ1:ktn−1

−1

`
dϑ

′
1:ktn

´
.

In this case, it is usually impossible to compute (2) because

µn

`
ϑ
′
1:ktn

´
=

Z
p

“
ϑ
′
1:ktn−1

˛̨̨
Ytn−1

”
dϑ

′
ktn−1

does not admit a closed-form expression. However dependent on
applications it might be possible to come up with sensible approxi-
mations of (4).

Split and Merge moves. Similarly to trans-dimensional MCMC,
it is possible to develop split and merge moves. However contrary
to MCMC we emphasize that it is not necessary to design reversible
moves. Moreover although one might be tempted to mimic MCMC
proposals this will usually yield unbounded importance weights. It
is recommended that the user always follows (4).

Trans-dimensional MCMC moves. It is always possible to use a

kernel Tn,MCMC of invariant distribution p
“

ϑ′
1:ktn

˛̨̨
Ytn

”
; that is a

trans-dimensional MCMC kernel [13]. However, it has to be applied
after other moves have been used and the particles resampled so that

they are approximately distributed according to p
“

ϑ′
1:ktn

˛̨̨
Ytn

”
. If

it is not the case, the problem is that it is very difficult to approximate
(4) and (5) is not valid in this case.
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Fig. 1. The figure shows the number of customers in the queue (top),
number of customers not accepted due to full buffer (middle) and
number of customers that dropped the queue (bottom). Solid lines
are the true number and dotted ones are the conditional expectations
according to the estimated distributions. We use N = 500 particles,
λ = 2, µ = 1, ω = 0.2 and C = 5. The results obtained are similar
for a higher number of particles.

4. APPLICATION TO PARTIALLY OBSERVED QUEUES

We consider the following problem. Some customers are arriving to
a queue at random times {τk}k≥1

. We assume that the interarrival
times are independent and identically distributed according f∆τ (·),
that is

f
τj |τ1:j−1

(τj | τ1:j−1) = f∆τ (τj − τj−1) .

Customers are served on a first in first out basis and the service times
{Sk}k≥1

are independent and identically distributed according to
fS (·). However, the queue has a finite capacity of C clients. Finally,
if the kth customer is in the queue but has been waiting to be served
longer than Uk then it drops out of the queue. Here {Uk}k≥1

are
independent and identically distributed according to fU (·)

We only have access to the departure times of customers who
have been served; that is the observation process is also a point pro-
cess

Y (dt) =
X
k≥1

δTk
(dt)

where the departures times {Tk}k≥1
are a deterministic function

of {τk}k≥1
, {Sk}k≥1

and {Uk}k≥1
. The stopping time Kt corre-

sponds to the index of the customer associated with the last departure
observed before or at time t.

Given a realization of the observations our aim is to estimate at
any time the posterior distributions

˘
p

`
τ1:ktn

, u1:ktn

˛̨
Ytn

´¯
. This

problem is clearly a trans-dimensional problem as the nth observed
departure at time tn does not necessarily correspond to the nth cus-
tomer who came to the queue because of the finite capacity of the
queue and the random dropouts. Based on these distributions, it is
possible to estimate the number of customers who have dropped out
of the queue, the number of customers currently in the queue etc.

Our filtering algorithm relies on the trans-dimensional method-
ology and combines birth moves, update moves and trans-dimensional
MCMC moves. Figure 1 presents the results obtained in the case
where f∆τ , fS and fU (·) are exponential distributions of parame-
ters λ, µ and ω. Note that each path has a different stopping time. In
order to compare the results with the real data, we use the distribu-
tions of the arrival, departure and waiting times to simulate the paths
forward until time tn.

Finally, we note that the trans-dimensional SMC approach al-
lows us to compute the (marginal) likelihood of the observations.

Hence this procedure could be extended to obtain the maximum like-
lihood estimates of the parameters of the inter-arrival, service and
dropout distributions.
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strategies for sequential Monte Carlo”, J. Comp. Graph. Stat.,
to appear 2006.

[12] P. Fearnhead, “Filtering recursion for calculating likelihoods
for queues based on inter-departure data”, Statist. Comput.,
vol. 14, pp. 261-266, 2004.

[13] P.J. Green, “Trans-dimensional Markov chain Monte Carlo”,
in Highly Structured Stochastic Systems, Oxford University
Press, 2003.

[14] K. Heggland and A. Frigessi, “Estimating functions in indirect
inference”, J.R. Statist. Soc. B, 66, 447-462, 2004.

[15] S. Maskell, “Joint tracking of manoeuvering targets and classi-
fication of their manoeuvrability”, J. App. Sig. Proc., 15, 2339-
2350, 2004.

[16] G.O. Roberts, O. Papaspiliopoulos and P. Dellaportas,
“Bayesian inference for non-Gaussian Ornstein-Uhlenbeck
stochastic volatility models”, J. R. Statist. Soc. B, 66, 2, 369-
393, 2004.

[17] D. L. Snyder and M. I. Miller, Random Point Processes in Time
and Space, Springer-Verlag, 1991.

[18] J. Vermaak, S.J. Godsill and A. Doucet, “Radial basis function
regression using trans-dimensional sequential Monte Carlo”,
Proc. IEEE Workshop. Statistical Signal Processing, 2003.

V  600


