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ABSTRACT

In this paper we present new normalized criteria for the ex-

traction of the scaled sources whose density have the mini-

mum support measure or the minimum entropy. Both crite-

ria are part of a more general entropy minimization principle

based on Renyi’s entropies. However, the proposed approach

(based on Renyi’s entropies or orders zero and one) have some

special advantages, which allow to relax the assumption of

having identically distributed source signals.

1. INTRODUCTION

In the last decade, independent component analysis (ICA) has

been revealed as an important tool in signal processing, data

mining, biomedicine and digital communications. The ICA

model considers the observations as a mixture of a certain

number of underlying independent components called sources.

An elegant presentation of the ICA criteria has been done

in terms of existing information theoretical and statistical re-

sults. Good examples of this methodology in approaching to

the problem were the manuscript of Comon [1], which for-

mally established the definition of ICA in information theo-

retic terms, and the classic manuscript of Donoho [2], which

did a similar work with the minimum entropy criterion for

blind deconvolution. More recently, in [3], a criterion based

on the statistical range of the outputs was proposed for blind

signal separation. In [4] we presented an extension of this

criterion, to the case of blind signal extraction of one signal,

based on the support of its density, or on the convex-hull of

the support. The convex-hull of the support was also used as

criterion in [5] where the authors showed that it does not have

local deceptive solutions.

In the present paper we will obtain novel practical nor-

malizations of the minimum entropy and minimum support

criteria for blind signal extraction. We will also show how

the normalization may influence and favor the extraction of

certain sources.

Part of this research was supported by the MCYT Spanish project

TEC2004-06451-C05-03.
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Fig. 1. Model for blind signal extraction.

2. SIGNAL MODEL AND NOTATION

Let us first consider the standard linear mixing model in a

noiseless situation. Consider N mutually independent sources

grouped in the random vector S = [S1, · · · , SN ]T . The prob-

ability density function (p.d.f.) of the i-th source is denoted

by fSi(si) and its support is given by

SSi = {si : fSi(si) > 0} . (1)

The Renyi’s differential entropy of order r of the Si is

hr(Si) =
r

1 − r
log ‖fSi

‖r, r ∈ {(0, 1) ∪ (1,∞)}. (2)

where ‖ · ‖r denotes the r-th order norm of the density. These

entropies can be extended by continuity to the cases

hr(Si) =
{

log(µ{SSi}) for r = 0,
− ∫

fSi(si) log fSi(si)dSi for r = 1,
(3)

where µ{·} denotes the Lebesgue measure of the support set

of the density.

The random vector observations X = [X1, · · · , XN ]T

follows a linear relationship with the vector of sources

X = AS, (4)

where A = [a1, . . . ,aN ] ∈ RN×N is the mixing matrix.

In the linear model (4), the Darmois-Skitovitch theorem

guarantees the identifiability of the original non-Gaussian sources

from the observations up to a permutation and scaling of them

[1]. The scaling and permutation indeterminacy in ICA means

that, for any non-singular diagonal matrix

D = diag(d1, . . . , dN ), (5)
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and for any permutation matrix P ∈ RN×N , any transfor-

mation of the form S → (P−1D−1S) preserves the indepen-

dence of the resulting components while still verifying the

linear decomposition of the observations

X = A′S′ = (ADP)(P−1D−1S) , (6)

In order to extract one non-Gaussian source from the mix-

ture, one can compute the inner product of the observations

with the vector u, to obtain the output random variable or es-

timated source

Y = uT X = gT S , (7)

where gT = uT A denotes the global mixture from the sources

to the output. Note that the ith source will be extracted when

u be proportional to one of the columns of the inverse trans-

pose of the mixing system A−T = [a−
1 , . . . ,a−

N ].

3. CONVOLUTION INEQUALITIES AND RENYI’S
ENTROPIES

We will assume in this section, without loss of generality, that

there are two sources S1 and S2 whose densities have respec-

tive bounded norms fS1 ∈ Lp(R) and fS2 ∈ Lq(R). The

p.d.f. of their mixture Y = g1S1 + g2S2 is given by the con-

volution of the two original densities

fg1S1 ∗ fg2S2(y) =
∫

fg1S1(y − τ)fg2S2(τ)dτ . (8)

The classical convolution inequality by Young relates the norm

of the three involved densities

‖fg1S1 ∗ fg2S2‖r ≤ ‖fg1S1‖p‖fg2S2‖q, (9)

where p, q, r ≥ 1 and 1
r = 1

p + 1
q − 1. A reverse form of this

inequality also exist for 0 < p, q, r ≤ 1 and 1
r = 1

p + 1
q − 1

‖fg1S1 ∗ fg2S2‖r ≥ ‖fg1S1‖p‖fg2S2‖q. (10)

Noting that ‖fgiSi‖1 = 1 and attending to the sign of r
(1−r) ,

for r = p > 0 and q = 1 the classical Young’s inequality and

its reverse form can both be rewritten as

‖fg1S1 ∗ fg2S2‖
r

(1−r)
r ≥ max

i
‖fgiSi‖

r
(1−r)
r , (11)

Thus, after taking logarithms, one can express the result in

terms of Renyi’s entropies

hr(Y ) ≥ max
i

hr(giSi) . (12)

Then, when assuming i.i.d. sources, one obtains a lower bound

for the entropy of the output

hr(Y ) ≥ hr(‖g‖∞S) . (13)

Two recent papers [6, 7] independently have arrived to this

expression, which can be used as criterion for the blind ex-

traction of i.i.d. sources. However, the resulting criterion de-

pends on the infinite norm of the output, which is not easy to

control since one does not have direct access to g.

In the late 1970’s several mathematics improved inequal-

ities (9) and (10) with sharp constants [8], as the following

theorem shows.

Theorem 1 (Strengthened convolution inequalities)
Let p, q, r > 0 satisfy 1

r = 1
p + 1

q − 1, and let fg1S1 ∈ Lp(R)
and fg2S2 ∈ Lq(R) be non-negative functions. Then, for
p, q, r ≥ 1

‖fg1S1 ∗ fg2S2‖r ≤ C1/2‖fg1S1‖p‖fg2S2‖q , (14)

and for 0 < p, q, r ≤ 1

‖fg1S1 ∗ fg2S2‖r ≥ C1/2‖fg1S1‖p‖fg2S2‖q , (15)

where C = CpCq/Cr and

Cη =
|η|1/η

|η′|1/η′ , (16)

for 1/η + 1/η′ = 1.

These inequalities are interesting because they bring a com-

mon way to proof the entropy power and Brunn-Minkowski

inequalities. Choosing p = r
r+λ(1−r) and q = r

r+(1−λ)(1−r)
where

λ =
e(1+r)hr(g1S1)

e(1+r)hr(g1S1) + e(1+r)hr(g2S2)
, (17)

and taking each of the following limits r → 0 and r → 1,

by the continuity of the entropies, the super-additivity of the

following function is obtained [9]

e(1+r)hr(Y ) ≥ e(1+r)hr(g1S1) + e(1+r)hr(g2S2) , (18)

for r ∈ {0, 1}. Note that these are the two only posible values

of the order r which can satisfy r = p = q and simultaneously
1
r = 1

p + 1
q − 1.

4. NORMALIZED MINIMUM ENTROPY AND
MINIMUM SUPPORT CRITERIA

The desired blind criteria for the extraction of one source are

grounded on the result of next lemma, which lower-bounds

entropy of order zero and of order one of the output in terms

of the respective entropies of the sources.

Lemma 1 (Entropy’s lower-bound) Let Y = gT S, then for
r ∈ {0, 1}, ∀ β ≥ (1 + r), a lower bound of the r-order
entropy of the output is given by

hr(Y ) ≥ log ‖Dg‖β +
N∑

j=1

∣∣∣∣ gjdj

‖Dg‖β

∣∣∣∣
β

hr(d−1
j Sj) (19)

V ­ 594



The tighter lower-bound is obtained for β = 1 + r, while the
loosest bound is for β = ∞.

Proof: The outline of the proof of this result is based on the

following chain of inequalities

hr(Y )
(a)

≥ 1
1 + r

log
N∑

j=1

e(1+r)hr((gjdj)(d
−1
j Sj)), r ∈ {0, 1}

(b)

≥ 1
β

log
N∑

j=1

|gjdj |βeβhr(d−1
j Sj), β ≥ (1 + r)

(c)

≥ log ‖Dg‖β +
N∑

j=1

∣∣∣∣ gjdj

‖Dg‖β

∣∣∣∣
β

hr(d−1
j Sj)

The idea of the proof consist in exploiting: a) the super-addi-

tivity of the function exp((1 + r)hr(Y )) for the considered

orders, b) the convexity of the power function for exponents

greater or equal to the unity, c) the strict concavity of the log-

arithm. �
The normalization of the inequality in the previous lemma

is obtained by subtracting the term log ‖Dg‖β from both sides.

In this way, the left-hand-part of the equation becomes scale

invariant. However, since the β-norm of the vector Dg is un-

known for us, in practice, we need to upper-bound it in a tight

way by another normalizing function which depends only on

the available information: the considered extraction system

u and the vector of observations X. This is what the next

theorem proposes.

Theorem 2 (Normalization) Assume that for a given func-
tion F (u,X) the values of the scaling coefficients are as-
signed in the following manner

dj =
{

ε if F (a−
j ,X) = 0,

F (a−
j ,X) otherwise.

(20)

where j = 1, . . . , N and ε 
= 0 is arbitrary small. Define set
of indices Ω′

r as

Ω′
r = {i : i = arg min

j=1,...,N.
hr(d−1

j Sj)}. (21)

If the normalizing function satisfies{
F (u,X) = ‖Dg‖β if u ∝ a−

i , i ∈ Ω′
r,

F (u,X) ≤ ‖Dg‖β otherwise.
(22)

then, for r ∈ {0, 1} and for a properly chosen norm β ≥ 1+r,
the following inequality applies

hr(Y ) − log F (u,X) ≥
N∑

j=1

∣∣∣∣ gjdj

‖Dg‖β

∣∣∣∣
β

hr(d−1
j Sj) (23)

Table 1 presents some normalizing functions F (u,X)
which satisfy the conditions of the theorem. The minimiza-

tion of the right-hand-side of (23), with respect to the vector

g, yields two interesting corollaries (whose proof is omitted).

Table 1. Some of the normalizing functions satisfying the

conditions of equation (22).

F (u,X) F (a−
i ,X)

r = 1, β = 2 σY σSi

r = 1, β > 2 |Cumβ(Y )| 1
β |Cumβ(Si)| 1

β

r = 0, β = 1 E[|Y |] E[|Si|]
r = 0, β = 1 |E[Y ]| |E[Si]|
r = 0, β > 1 |Cumβ(Y )| 1

β |Cumβ(Si)| 1
β

r = 0, β ≥ 1 ‖u‖β ‖a−
i ‖β

Corollary 1 (Normalized minimum entropy criterion)
When F (u,X) satisfies the conditions of equation (22) for
β ≥ 2, the following inequality holds true

h1(Y ) − log F (u,X) ≥ h1(Si/F (a−
i ,X)), i ∈ Ω′

1. (24)

Moreover, the minimum of the left-hand-side of the inequality
is only reached at the extraction of any of the scaled sources of
minimum entropy, i.e., when i ∈ Ω′

1, otherwise the inequality
is strict.

When the normalizing function is equal to the standard de-

viation of the output F (u,X) = σY , the previous corollary

reduces to the well known minimum entropy criterion for ex-

traction (see [2, 10] and references therein). However, other

normalizations based on higher order cumulants, like the one

presented Table 1, could result preferable when there is addi-

tive Gaussian noise in the mixture.

Corollary 2 (Normalized minimum support criterion)
When F (u,X) satisfies the conditions of equation (22) for
β ≥ 1, the following inequality holds true

h0(Y ) − log F (u,X) ≥ h0(Si/F (a−
i ,X)), i ∈ Ω′

0. (25)

When β > 1, or when β = 1 and the cardinality of the set
|Ω′

0| = 1, the minimum of the left-hand-side of the inequality
is only reached at the extraction of any of the scaled sources
of minimum support.

Some of the normalized criteria exhibit robustness to certain

kinds of noise and outliers, but this analysis will not be con-

sidered here for reasons of space.

5. SIMULATIONS

In this section we illustrate the contrast nature of the pro-

posed criteria with a very simple example of extraction. Let

rect(t) denote the square pulse, and let tri(t) = rect(t) ∗
rect(t) denote a triangular pulse, both of unit area and cen-

tered at the origin. We consider to two independent sources

whose histograms are shown in figure 2. The samples of first
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Fig. 2. Histograms of the considered sources.

source were drawn from a uniform random variable of density

fS1(s1) = rect(s1 +3/2), whereas the samples of the second

source were drawn from a triangular random variable of den-

sity fS2(s2) = tri(4s2 − 4). The observations were a mixture

of the sources by the matrix A = [1,−1; 1, 1]. The extraction

vector u = [u1, u2]T was parametrized in terms of its angle

with the axis of abscissas. For the previous mixture, an angle

of π/4 extracts the first source, whereas an angle of −π/4
extracts the second source.

Figure 3 presents different normalized criteria for the zero-

order entropy. From the figure, one can observe that, in all

cases, the minimum of the proposed criteria are obtained at

the solutions that extract one of the sources. The example

also shows how the choice of F (u,X) gives a certain freedom

that can be used to favor the extraction of sources with certain

stochastic properties. In the example, the criteria with cumu-

lants of odd order favor the extraction of the second source,

whereas the criteria with cumulants of even order favor the

extraction of the first source. This can be explained from the

fact that the sample cumulants of odd order have a similar

value for the two sources, so they do not influence the order

of preference in the extraction. For cumulants of even order

the situation is different. The sample cumulants of even order

of the first source are much more important than those of the

second source, thus, influencing the preferences of extraction.

6. CONCLUSIONS

In this paper we have presented criteria for the blind extrac-

tion of the independent components with minimum normal-

ized support or with minimum normalized entropy. These

normalizations can be used to alter the preferred order of ex-

traction and to improve the robustness of the criteria to the

presence of certain kinds of additive noise. This robustness

was not analyzed in this paper and it will be presented elsewere.
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