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ABSTRACT

In this paper, we propose a method to explicitly construct a
reproducing kernel Hilbert space (RKHS) associated with a
Gaussian kernel by means of polynomial spaces. In contrast
to the conventional Mercer’s theorem approach that implic-
itly defines kernels by an eigendecomposition, the function-
als in this reproducing kernel Hilbert space are explicitly con-
structed and are not necessary orthonormal. We also point
out an intriguing connection between this reproducing kernel
Hilbert space and a generalized Fock space. We give an ex-
perimental result on approximation of the constructed kernel
to a Gaussian kernel.

1. INTRODUCTION

Recently, several powerful kernel-based learning algorithms
have been proposed, among which are support vector ma-
chines [11], kernel principal component analysis [10], ker-
nel Fisher discriminant [6] and kernel independent compo-
nent analysis [2]. Kernel-based algorithms are nonlinear ver-
sions of linear algorithms where the data has been nonlinearly
transformed to a high dimensional, possibly infinite dimen-
sional, feature space where we only need to compute the in-
ner product of transformed data via the kernel functions. The
attractiveness of kernel-based algorithms resides in their ele-
gant treatment of nonlinear learning problems and efficiency
for high-dimensional problems. Kernel methods have been
successfully applied to classification, regression, density esti-
mation and etc [9].

The reproducing kernel Hilbert space plays an important
role in kernel-based learning algorithms. An RKHS is a Hilbert
space of special properties [1]. In fact, the feature space into
which the data is mapped is an RKHS where the nonlinear
mapping Φ constitutes the basis. The nonlinear mapping Φ
is related to an integral operator kernel K(x, y) which corre-
sponds to the inner product of transformed data:

K(x, y) =< Φ(x),Φ(y) > . (1)
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The essence of kernel-based learning algorithm is that the in-
ner product of the transformed data can be implicitly com-
puted in the RKHS without explicitly using or even knowing
the nonlinear mapping Φ. Hence, by applying kernels one can
elegantly build a nonlinear version of a linear algorithm based
on inner products.

One of the most fundamental issues in learning problems
is the selection of the data representation. In kernel-based
learning algorithms, this translates into the choice of the func-
tionals, or the appropriate feature space RKHS. The reason is
that the nonlinear mapping has a direct impact on the ker-
nel and thus, on the solution of the given learning problems.
Different kernels (polynomial, sigmoid, Gaussian) very likely
will result in different performances. The advantage of kernel-
based learning algorithms becomes also a disadvantage. The
general question of how to select the ideal kernel for a given
problem remains an open issue.

Recently, there have been attempts to explicitly construct
an RKHS. A. Rakotomamonjy et al proposed a method of
building an RKHS and its associated kernels by means of
frame theory [7]. Any vector in that RKHS can be represented
by linear combination of the frame elements. But a frame is
not necessary linear independent although it results in stable
representation. In the present work, we take the polynomial
space approach to construct explicitly an RKHS associated
with one of the most popular kernels, the Gaussian kernel.
By transforming a generalized Fock space [3] with a positive
operator, we build an RKHS associated with Gaussian kernel.
The functionals, are explicitly given by the polynomials. Un-
like the Mercer’s theorem approach, these functional are not
necessary orthornomal.

This paper is organized as follow. First we briefly in-
troduce the Mercer’s theorem. The main result of the pa-
per is presented in the section 3, where a polynomial space
method is proposed to explicitly construct a reproducing ker-
nel Hilbert space associated with Gaussian radial basis ker-
nel. Then we proceed to point out the connection between
the RKHS and the generalized Fock space. In section 5, we
present a toy example simulation to show the effectiveness of
approximation of the constructed kernel to a Gaussian kernel.
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2. MERCER’S THEOREM

One of the fundamental theorem in reproducing kernel Hilbert
space research field is the Mercer’s theorem, which gives the
eigen-decomposition of a positive definite function (kernel)
by orthonomalizing the kernel space.

Mercer’s theorem: Suppose R is a continuous symmet-
ric non-negative kernel on a closed finite interval T × T. Let
{ϕk(x), k = 1, 2,...} be a sequence of normalized eigenfunc-
tion of the kernel R, and {λk, k = 1, 2, ...} be the sequence of
corresponding non-negative eigenvalues. In other word, for
all integers k and j,∫

T

R(x, y)ϕk(x)dx = λkϕk(y), x, y ∈ T (2)
∫

T

ϕk(x)ϕj(x)dx = δk,j (3)

where δk,j is the Kronecker delta function, i.e., equal to 1 or
0 according as k = j or k �= j. Then

R(x, y) =
∞∑

k=0

λkϕk(x)ϕk(y) (4)

where the series above converge absolutely and uniformly on
T × T [5].

It follows that R(x, y) can be rewritten as an inner product
between two vectors in the feature space, i.e.,

R(x, y) =< Φ(x),Φ(y) >

Φ : x �→
√

λkϕk(x), k = 1, 2, .... (5)

Kernel-based learning algorithms use the above idea to map
the data in the input space to a high-dimensional, possibly
infinite-dimensional, feature space, which is an RKHS with
functionals Φ(x) and inner product defined by equation (4)
via the nonlinear mapping Φ. Instead of considering the given
learning problem in input space, one can deal with the trans-
formed data {Φk(x), k = 1, 2, ...} in feature space. When the
learning algorithms can be expressed in terms of inner prod-
ucts, this nonlinear mapping becomes particular interesting
and useful since one can employ the kernel trick to compute
the inner products in the feature space via kernel functions
without knowing the exact nonlinear mapping.

Mercer’s theorem is more like an existence theorem be-
cause it does not give the explicit formula for the functionals
in the RKHS. While kernel-based learning algorithms work
well even without this knowledge since every quantity is ex-
pressed in terms of inner product of functionals (i.e., the ker-
nels), their functional form is still of great interest to optimize
performance and to get an insight into the appropriateness of
the representation. Ultimately, this will allow us to utilize the
RKHS structure and expand the class of algorithms, beyond
inner products, that can be developed in kernel space. In the
next section, we will present a method to construct an RKHS
with the popular Gaussian kernel, with explicit expressions
for the functionals using polynomial spaces.

3. EXPLICIT CONSTRUCTION OF AN RKHS BY
POLYNOMIALS

In this section, we present the main result of this paper of ex-
plicitly constructing an RKHS using polynomials. First we
give the definitions of functionals and inner product of a gen-
eral Hilbert space. Then, a kernel function is imposed on this
general Hilbert space to make it a reproducing kernel Hilbert
space. This approach of building an RKHS with polynomi-
als can also be found in [3], which is called generalized Fock
space. Our contribution in this paper is that it is an RKHS as-
sociated with Gaussian kernel that we explicitly construct by
introducing new definitions of functionals and kernel func-
tion. The connection between the generalized Fock space and
our result will be discussed in section 4.

First we construct an inner product space H by defining
functionals and inner product. The evaluation of functional f
at any given x is given by

f(x) = e−
x2
2σ0

n∑
k=0

fk

k!
xk (6)

where σ0 is a constant and (n + 1)-tuple (f0,f1, ... , fn ) are
the coefficients which uniquely characterize the polynomial f.
Then the inner product between any two functionals f and h
can be specified in the form

< f, h >=
n∑

k=0

σk

k!
fkhk (7)

where fk and hk are coefficients for f and h respectively and
σ = (σ0, σ1, ..., σn) is a set of positive constants chosen a
priori. It can be easily seen that this inner product space H is
complete thus forming a Hilbert space.

In order to make H a reproducing kernel Hilbert space,
we impose a kernel function K on H in the following form

K(x, y) = e−
x2+y2

2σ0

n∑
k=0

1
k!σk

(xy)k. (8)

It can be verified that the Hilbert space H, equipped with such
K, is a reproducing kernel Hilbert space and the kernel func-
tion K(x, ·) is a reproducing kernel because of the following
two properties of K(x, y):

1. K(x, y) as a function of y belongs to H for any fixed x
because we can rewrite K(x, y) as

K(x, ·)(y) = e−
y2

2σ0

n∑
k=0

(xk

σk
· e− x2

2σ0 )

k!
yk (9)

i.e., the constants (xk/σk · e− x2
2σ0 ), k = 0, 1, ..., n be-

come the coefficients fk, k = 0, 1, ..., n in the defini-
tion of f , and thus

K(x, ·) ∈ H. (10)
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2. Given any f ∈ H, the inner product between reproduc-
ing kernel and f yields the function itself,

< K(x, ·), f >=
n∑

k=0

σk

k!
(
xk

σk
e−

x2
2σ0 ) · fk

= e−
x2
2σ0

n∑
k=0

fk

k!
xk = f(x). (11)

This is so called reproducing property.

The RKHS constructed above has the freedom to choose
the degree of functionals, i.e., the dimension n of the kernel
space H. The most interesting case is that we might extend
it to an infinite-dimensional RKHS provided that the norm
of functional is finite as n → ∞, i.e., given a sequence of
positive weighting constants satisfying certain conditions σ =
(σ0, σ1, ... ),

‖ f ‖2=< f, f >=
∞∑

k=0

σk

k!
f2

k < ∞. (12)

Then the functionals, inner product and reproducing kernel in
H will be defined by (6), (7) and (8) with n = ∞.

In the special situation of weights

σk = σk
0 , k = 1, 2, ... (13)

where σ0 is a fixed positive constant, then the reproducing
kernel (8) in the infinite-dimensional RKHS becomes

K(x, y) = e−
x2+y2

2σ0
∑∞

k=0
1
k! (

xy
σ0

)k

= e−
x2+y2

2σ0 e
xy
σ0

= e−
(x−y)2

2σ0 (14)

which is the Gaussian kernel used widely in machine learn-
ing, function approximation, density estimation, support vec-
tor machine, and etc. The constant σ0 turns out to be the
kernel width. It controls the norm length of those functionals
in RKHS. i.e., the spread of nonlinear mapped data sample in
feature space.

Comparing this method with Mercer’s theorem, we notice
that there are two major differences between them.

1. First, we have given an explicit expression for the func-
tionals in the RKHS associated with Gaussian kernel
in terms of polynomials while Mercer’s theorem never
does that. We can get the exact evaluations for those
functionals at each point in the RKHS. This enables us
to know exactly the structure of the RKHS associated
with the Gaussian kernel.

2. Second, the functionals we constructed above are not
necessary an orthonormal basis, while the Mercer’s the-
orem is realized by orthonormalizing the RKHS. This

perspective provides also a general alternative to build
an RKHS from known functionals besides from Mer-
cer’s theorem.

The method we constructed an RKHS enables us to have
the explicit expression of the functional in RKHS associated
with Gaussian kernel. Hence we can exactly know the non-
linear mapping Φ used in the kernel-based learning algorithm
and so operate directly with the transformed data to extend the
algorithms beyond inner products. Furthermore, as we have
the control of the dimension of the RKHS H, this might help
the computational complexity issue in kernel-based learning
algorithms through approximation of Gaussian kernel by poly-
nomials as indicated in equation (8).

4. CONNECTION WITH GENERALIZED FOCK
SPACE

The idea of Fock space was first proposed by Fock in [4] to
be used in quantum mechanics, where quantum states are de-
scribed in the way of passing from one single object to col-
lections of objects. More recently Figueiredo introduced an
”arbitrarily weighted Fock space”, which was called general-
ized Fock space in [3]. The space is equipped with an appro-
priate weighted inner product, thus forming an RKHS. The
proposed RKHS has been used in liearn/nonlinear system and
signal analysis, where a number of problems are involving ap-
proximation and inversion of nonlinear functions/functionals,
and nonlinear operators [3].

In the univariate case, a generalized Fock space Fn is
an RKHS, where the functionals f , inner product and kernel
function F are defined as follows respectively,

f(u) =
n∑

k=0

fk

k!
uk (15)

< f, h >F =
n∑

k=0

σk

k!
fkhk (16)

F (u, v) =
n∑

k=0

1
k!σk

(uv)k (17)

where the real (n + 1)-tuple (f0,f1, ... , fn ) completely char-
acterizes f , σ = (σ0, σ1, ..., σn) is a set of positive weighting
constants which are chosen a priori according to the problems
under consideration. It can be shown that this generalized
Fock space is an RKHS.

Similar to the RKHS H we constructed in section 3, the
generalized Fock space Fn has the freedom of choosing the
space dimension. The interesting case is that when the space
becomes infinite dimensional while the norm of the functional
satisfying the same condition (12) as n → ∞. Then the kernel
function F (u, v), defined by (17), will become an exponential
kernel as n → ∞,

K(x, y) = e
xy
σ0 (18)
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Fig. 1. Square Error between a Gaussian kernel and the constructed
kernel in (8) versus the order of polynomials

given the same weights constraint as (13).
It can be noticed that there are similarity and difference

between the RKHS H constructed in section 3 and the gen-
eralized Fock space Fn. The definitions for the inner prod-
uct inside the two spaces are the same, while the functionals
and kernel function are different. The relationship of the two
spaces H and Fn is connected by a theorem in [1], which we
will cite below without proof.

Theorem: Let H1 and H2 be two reproducing kernel Hilbert
spaces of the same definitions of inner product, then there ex-
its a positive operator with bound not greater than 1 that trans-
forms H1 into H2 ⊂ H1.

Comparing the definitions of functionals for two spaces,
we can see that the e−x2/2σ0 plays the role of a positive op-
erator with bound not greater than 1, thus transforming the
generalized Fock space Fn into H such that H ⊂ F .

5. SIMULATIONS

We present a simple simulation here to show the effective-
ness of approximation of the polynomial functionals to the
Gaussian kernel. In the simulation, we calculate the square
error between the Gaussian kernel and the proposed kernel
in (8) of order n. The kernel width is chosen to be 1, and
the range of the calculated data is from -5 to 5. The figure
plots the square error versus order n. It suggests from the plot
that with only order 11 we can effectively approximate the
Gaussian kernel by polynomials. This also indicates that for
practical purpose it is sufficient to work with much smaller
dimensional space in stead of infinite dimensional space for a
Gaussian kernel in kernel-based learning algorithms.

6. CONCLUSION

We have proposed a method to construct an RKHS associated
with the Gaussian kernel by means of a polynomial space.

Unlike the Mercer’s theorem which orthonomalizes the RKHS
by eigendecomposition of kernel, this method yields an RKHS
with functionals that are not necessary orthonormal. Further-
more, it gives the explicit expressions of functionals which
constitute the RKHS. This way of constructing the RKHS en-
ables us to have the exact knowledge of the nonlinear map-
ping used in kernel-based learning algorithms based on the
Gaussian kernel. The control of the dimension of the RKHS
opens the possibility to deal with the computational complex-
ity of kernel-based learning algorithm by approximating the
Gaussian kernel via polynomials. On the other hand, we point
out the close relationship between the RKHS associated with
Gaussian kernel and the generalized Fock space.
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