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ABSTRACT

The typical cut is a clustering method that is based on the proba-

bility pnm that points xn and xm are in the same cluster over all pos-

sible partitions (under the Boltzmann distribution for the mincut cost

function). We present two contributions regarding this algorithm. (1)

We show that, given a kernel density estimate of the data, minimis-

ing the overlap between cluster densities is equivalent to the mincut

criterion. This gives a principled way to determine what affinities

and scales to use in the typical-cut algorithm, and more generally

in clustering and dimensionality reduction algorithms based on pair-

wise affinities. (2) We introduce an iterated version of the typical-cut

algorithm, where the estimated pnm are used to refine the affinities.

We show this procedure is equivalent to finding stationary points of

a certain objective function over clusterings; and that at the station-

ary points the value of pnm is 1 if n and m are in the same cluster
and a small value otherwise. Thus, the iterated typical-cut algorithm

sharpens the pnm matrix and makes the cluster structure more obvi-

ous.

1. INTRODUCTION

Pairwise-distance algorithms for clustering use as starting point a

collection of affinity valueswnm between pairs of points xn and xm

(rather than the actual feature vectors). Often Gaussian affinities are

used with a scale parameter σ. While a number of such algorithms
exist, definition of the affinities is problematic, in particular selecting

a good σ value requires running the clustering algorithm for a range
of σ values.
In this paper we show a connection between kernel density esti-

mation and the definition of affinities for clustering. We focus on

a particular pairwise-distance algorithm, the typical cut [1, 5, 6],

though the result is more general. We also study an extension of

the typical-cut algorithm obtained by successively iterating it, which

tends to polarise the affinities, so a simple inspection is enough to

cluster the data.

We summarise the typical-cut algorithm in section 2. We give

the relation with kernel density estimation in section 3 and exper-

iments in section 4. We give the iterated typical-cut algorithm in

section 5.

2. AFFINITY-BASED CLUSTERING, MINCUT AND
TYPICAL CUT

We give a brief explanation of the typical-cut clustering algorithm of

Blatt et al. [1]. Assume we have a data set {xn}N
n=1 ⊂ R

D . First we

define Gaussian affinities wnm = exp (− 1

2
(‖xn − xm‖ /σ)2) ∈

(0, 1] where the width σ is taken as the average nearest-neighbour

distance over the whole data set. A proximity graph structure can be

imposed by selectively zeroing wnm values: ref. [1] used a nearest-

neighbour graph augmented with the minimum spanning tree (MST),

but other graphs are also possible (e.g. the MST ensembles of [2]).

Given a fixed integer q > 2, define a state vector s = (s1, . . . , sN )
where sn ∈ {1, . . . , q} is the label for xn (a Potts model with q spin
values and N particles, in statistical mechanics1). Now we define
the following cost function over states s:

C(s) =

NX
n,m=1

wnm(1 − δsn,sm).

Thus, C(s) is the sum of the affinities of all pairs of points whose
states are different. Under the Potts model, C(s) is the energy of the
system state s, where wnm are the magnetic interactions between

particles. An alternative view of C(s) results if we see wnm as

the weight matrix of a graph: C(s) is the value of the q-way graph
cut (where each of the q subgraphs contain vertices with the same
spin value). The mincut criterion [3] for graph-based clustering min-

imises precisely C(s) over all clusterings. However in practice this
often results in singleton clusters, which has prompted investigation

of other graph-cut functions (e.g. normalised cuts [4] or the typical

cut).

In the typical cut, we do not minimiseC(s) directly. Instead, we
define a Boltzmann distribution over states at thermal equilibrium:

Q(s) =
1

Z
exp (−C(s)/T ) Z =

X
states s

exp (−C(s)/T )

where T > 0 is the temperature of the system, which acts as a scale
parameter. When T → 0, Q(s) tends to a delta distribution at the
global minimum of the energy, which occurs at the state where all

spins are aligned (δsn,sm = 1), i.e., there is a single cluster. When
T → ∞,Q(s) tends to a uniform distribution, with all states equally
likely. Intermediate T values result in intermediate clusterings. At
fixed T , we define the probability pnm that points xn and xm are in

the same cluster as their average co-alignment under the Boltzmann

distribution, i.e., pnm = 〈δsn,sm〉Q =
P
states s Q(s)δsn,sm . Blatt

et al. [1] argue that, when a cluster structure exists in the data, the

clusters can be found by: (1) locating an appropriate T value by
inspecting the behaviour of a certain function χ(T ) (whose details
we omit) which displays the phase transitions of the system; and (2)

building a graph where points xn and xm are connected if pnm > 1

2
.

The connected components of this graph give the clusters. Blatt et

al. [1] show good clustering results in several data sets.

1The resulting number of clusters is not restricted by the choice of q [1].
It is advisable to use a large q (which gives sharper results) though this also
increases the state space and so the computational complexity.
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The averages over Q (e.g. pnm = 〈δsn,sm〉Q) must be com-
puted approximately because the partition function Z is a sum over
qN states for which we lack a closed-form expression. Ref. [1]

uses a Markov-chain Monte Carlo approach, where an average A =
〈A(s)〉Q is approximated as

1

M

PM
k=1

A(sk) by means of a sample

{sk}M
k=1 from the Q distribution, obtained using Swendsen-Wang

sampling (vastly more efficient than Gibbs sampling for this prob-

lem). Other methods for approximating pnm have been proposed

(randomized trees sampling [5], generalised belief propagation [6]).

3. RELATION WITH KERNEL DENSITY ESTIMATION

Assume we have a kernel density estimate for the data set:

P (x) =
1

N

NX
n=1

Kn(x − xn).

For example, we can take a Gaussian kernel with fixed isotropic co-

variances: Kn(x−xn) = (2πσ2)−D/2 exp (− 1

2
(‖x − xn‖ /σ)2).

Given a partition of the data set into q clusters (s = (s1, . . . , sN )
with sn ∈ {1, . . . , q}), define the cluster densities

Pi(x; s) =
1

Ni

NX
n=1

Kn(x − xn)δi,sn

(where i = 1, . . . , q indexes the clusters and Ni is the number of

points in cluster i). That is, Pi is the kernel density estimate for the

points in cluster i. We also have

P (x) =

qX
i=1

Ni

N
Pi(x) =

qX
i=1

πiPi(x).

We measure the density overlap between two clusters i, j as in [7]

Cij(s) =

Z
Pi(x; s)Pj(x; s) dx.

We obtain

Cij(s) =

Z
Pi(x; s)Pj(x; s) dx

=
1

NiNj

NX
n,m=1

δi,snδj,smwnm =
1

NiNj

X
n∈i
m∈j

wnm

(that is, proportional to the sum of the edges that cross between clus-

ters i and j) if we define the affinities

wnm =

Z
Kn(x − xn)Km(x − xm) dx. (1)

For example, for the isotropic Gaussian kernel of fixed width σ we
obtain wnm = (4πσ2)−D/2 exp (− 1

2
(‖xn − xm‖ /

√
2σ)2).

A plausible clustering objective function to minimise over all

partitions s is the collective density overlap:

C(s) = N2

qX
i�=j

πiπjCij(s)

= N2

 
qX

i,j=1

πiπjCij(s) −
qX

i=1

π2

i Cii(s)

!

=

0
B@ qX

i,j=1

X
n∈i
m∈j

wnm −
qX

i=1

X
n,m∈i

wnm

1
CA = 2

X
n,m∈

�=clusters

wnm.

Thus we see that minimising the collective density overlap is equiv-

alent to minimising the sum of affinities of crossing edges, which is

identical to the mincut objective function, and to the energy function

in the typical-cut Boltzmann distribution. Beyond those two meth-

ods, our result suggests a principled, objective way to determine the

pairwise affinity between two points, namely as given by a kernel

density estimate (which in turn was estimated to optimise e.g. the

likelihood of the data). For example, if we want to use isotropic

Gaussian affinities of fixed width σ, then the appropriate σ value
is that corresponding to a Gaussian kernel density estimate with

fixed isotropic covariances 2σ2
I. Apart from relating two differ-

ent problems (clustering and density estimation), this avoids solving

the clustering problem for many σ values in order to obtain a good
clustering—instead, we find a good density estimate, which may be

more efficient.

4. EXPERIMENTS

Here we show that deriving the affinities from a kernel density es-

timate using eq. (1) results in high-quality affinities that in turn im-

prove clustering with e.g. the typical-cut algorithm. We use isotropic

Gaussian affinities wnm ∝ exp (− 1

2
(‖xn − xm‖ /σnm)2), i.e., we

assume a Gaussian kernel density estimate. We test the following

rules for selecting the widths σnm:

1. Constant σnm = a, equal to the average nearest-neighbour
distance over the whole data set. This is the rule used in the

original typical-cut paper [1].

2. Constant σnm = σ, set as in the rule in [8, pp. 85–87], which
is optimal in the mean integrated square error sense.

3. Constant σnm = σ, set by a leave-one-out maximum likeli-
hood estimator [9].

4. Adaptive kernel density estimator whereKn(x − xn) is iso-
tropic Gaussian with width σn = σan where an is the aver-

age distance to the k nearest neighbours of xn (k is chosen in
advance and fixed for all xn), and σ is chosen to maximise
the likelihood. This results in adaptive affinities wnm =`
2π
`
σ2

n + σ2

m

´´− D
2 exp

“
− 1

2

`‖xn − xm‖ /
√

σ2
n + σ2

m

´
2
”
.

It is also possible to use full-covariance kernels, or non-Gaussian

kernels, to define the affinities wnm in eq. (1).

Figure 1 shows the results for a data set containing two very

different scales: one compact cluster and one loose cluster. We show

the affinity matrices for each selection rule. It is apparent that, when

a constant σ is used, the traditionally established rules (based on
maximising likelihood or minimising the error) result in significantly

better affinities than the typical-cut rule; while the adaptive kernel

estimator obtains the best results.

5. ITERATED TYPICAL CUT

In the typical cut, we hope that the probabilities pnm = 〈δsn,sm〉Q
are significantly high for points that should be in the same cluster;

the connected components of the graph defined by thresholding pnm

give then the clusters. We can see the pnm values as refined versions

of the original affinities wnm. The latter were purely local in nature,

since they depend only on xn and xm, and are thus not foolproof

predictors of whether xn and xm should be clustered together. The

pnm introduce contextual information, so that pairs of points with

the same affinity may have significantly different pnm values.

It seems then natural to refine the affinities even further by feed-

ing the pnm values back to the typical-cut algorithm. That is, we
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Data set {xn}N
n=1
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Fig. 1. Affinity matrices (wnm) obtained with the different rules for the affinity scale σ for the dataset shown on the left. The rules derived
from the density estimate improve over the typical-cut rule. In particular, the adaptive kernel density estimator is able to use different scales

in different regions of the data and so produce a much better affinity matrix, as is apparent in its block structure. Note: figures 1 and 2 should

ve viewed in colour.

start with affinities wnm and obtain pnm; then we define as input to

the typical-cut algorithm the refined affinities pnmwnm, and iterate.

If this process converges, the P = (pnm) values must satisfy the
self-consistent equation:

pnm =
X
states s

e−
C(s,P)

T

Z(P)
δsn,sm (2)

Z(P) =
X
states s

e−
C(s,P)

T , C(s,P) =
NX

n,m=1

wnmpnm(1 − δsn,sm).

We can interpret this result in a Markov chain sense: successive it-

erations propagate information over the graph (defined by wnm),

sharpening the result obtained in the first iteration. Note that it

makes no sense to redefine the affinities as pnm directly rather than

pnmwnm. In the former case, the wnm would only initialise the

fixed-point iteration but eq. (2) would not depend on wnm, which is

precisely the dataset-dependent information.

This equation can be used as the basis of a fixed-point iteration.

Assuming wnm > 0 ∀n, m, it is easy to show that this equation can
also be derived as the stationary point of the following cost function:

J(P) =
X
states s

exp

 
−C(s,P)

T
+

1

T

NX
n,m=1

wnm

„
pnm − p2

nm

2

«!

= Z(P) exp

 
1

T

NX
n,m=1

wnm

„
pnm − p2

nm

2

«!
.

We can gain understanding of the character of the fixed points of J
by examining its extreme cases:

• When T → 0, the Boltzmann distribution tends to a delta
centred at the global minimum ofC(s,P), namely the single-
cluster case where all spins are aligned (sn = sm ∀n, m).
We obtain pnm = 1 ∀n, m, i.e., P is a matrix of ones. The
Hessian of J is proportional to−diag (wnm) and so negative
definite, thus the solution is a maximum of J(P).

• When T → ∞, the Boltzmann distribution tends to a uniform
distribution, with all states equally likely. We obtain that the

fixed point is at pnm = 1 if n = m and 1

q
if n �= m, and

again the Hessian of J is proportional to −diag (wnm), thus
negative definite, and the solution is a maximum.

This is also confirmed by analysing exactly the simple case ofN = 2
data points, for which eq. (2) becomes p = 1/(1+(q−1)e−2wp/T ) ∈
( 1

q
, 1). For small T , p ≈ 1; for large T , p ≈ 1

q
; and for a range of

intermediate T , there are 3 fixed points, of which only p ≈ 1 and
p ≈ 1

q
are stable.

This suggests that for the general case, for stable clusterings at

intermediate values of T (as detected e.g. using the χ(T ) function in
[1]) we should obtain pnm ≈ 1 if n andm are in the same cluster and
pnm ≈ 1

q
otherwise. Therefore, the (possibly permuted) matrix P

is made up of blocks of ones along the diagonal (for the intra-cluster

pnm) and values ≈ 1

q
elsewhere. Usually q is quite larger than 2,

so 1

q

 1 and just by inspection we can tell which points are in the

same cluster without the need to compute connected components.
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Fig. 2. Matrix P = (pnm) of contextual affinities produced af-
ter convergence of the iterated typical-cut algorithm for the dataset

shown on the top, for 3 regimes of T , using Gaussian affinities with
σ = 0.2, q = 20 spin values and M = 1000 Swendsen-Wang
samples (the dataset contains only N = 16 points so the individual
pnm values can be seen). We show the P matrix that results from

the first iteration (i.e., the original typical-cut algorithm) and after

convergence of the iterated typical-cut algorithm (which occurred in

a few iterations). In the first iteration, the values of pnm can be far-

ther from 1 (dark red) and 1

q
= 0.05 (dark blue); notice the colorbar.

Thus, thresholding P and finding its connected components is nec-

essary. In the iterated version, all pnm approximately converge to

either 1 (diagonal blocks, i.e., clusters) or 1

q
(off-diagonal blocks),

thus sharpening the affinities. Note the number of clusters for a given

T need not be the same for both versions.

This is confirmed in the experiment of fig. 2 (using Swendsen-Wang

sampling to estimate the pnm probabilities [1]), which shows how

the initial P contains a wide range of values in (0, 1) while the final
P (after a few iterations) binarises into the two poles { 1

q
, 1}.

Computationally, note that we cannot reuse the same Swendsen-

Wang sample for different iterations since the Boltzmann distribu-

tion depends on P, which changes over iterations. Experimentally

we observe that the “1” values converge very fast (a couple of itera-

tions) while the “ 1
q
” values oscillate mildly; this is presumably due

to the sampling noise.

In summary, by starting with local affinities wnm and iterating

the construction of contextual affinities pnm defined by the typical

cut, we obtain a sharply binarised affinity matrix P where the clus-

tering structure at the given scale T is obvious. This is an alternative
to thresholding the initial P and finding its connected components.

6. DISCUSSION

We have shown (1) that one can define pairwise affinities between

data points given a kernel density estimate, and (2) that the iter-

ated typical cut can produce sharp contextual affinities. Although

we have focused on the typical cut, our first result applies more

generally to pairwise-distance algorithms for clustering (e.g. nor-

malised cuts, spectral clustering [4]) and dimensionality reduction

(e.g. Laplacian eigenmaps [10]). Such algorithms require a search

(or clever choice) over the affinity scale parameter σ to succeed.
Our result transforms the problem of finding good affinities and good

scales σ into finding good density estimates—awell-researched prob-
lem for which objective rules exist. (Conversely, given a ground-

truth clustering of the data, we could invert this process to find σ
for which this clustering occurs and use it for kernel density estima-

tion.) This point of view brings together density estimation, prox-

imity graphs and affinities in a principled way. For example, using

a finite-support kernel (such as the Epanechnikov kernel, i.e., qua-

dratic up to distance σ, 0 beyond) automatically results in a sparse
graph. By using an adaptive kernel size we obtain both a density

estimate and a proximity graph (given by the affinities).
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