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ABSTRACT

A method is presented for deriving an optimal basis for features clas-
sified with a support vector machine. The method is based on mini-

mizing the leave-one-out error which is approximated by the radius–

margin bound. A gradient descent method provides a learning rule

for the basis in an outer loop of an iteration. The inner loop per-
forms support vector machine training and provides support vector

coefficients on which the gradient descent depends. In this way, the

derivation of a basis for feature extraction and the support vector ma-

chine are jointly optimized. The efficacy of the method is illustrated
with examples from multi-dimensional synthetic data sets.

1. INTRODUCTION

When data from multi-dimensional measurements is represented as a

feature vector, the feature space of the raw data often has a very large

dimension. It is usually prudent to re-represent the original measure-
ments in more compact form (a shorter feature vector). The process

of selecting features from the raw measurements is one of feature

selection or feature extraction. It is, in general, a problem of dimen-

sionality reduction. The ultimate goal of feature selection/extraction
is to find the minimum number of features required to capture the es-

sential structure in the raw data. This minimum number of features

is termed the intrinsic dimensionality of the data. This dimension-

ality reduction is accomplished by applying a transformation (linear
or non-linear) to the the input data.

Linear statistical techniques, such as Principal Component Anal-

ysis (PCA) and Independent Component Analysis (ICA) have been
used to reduce the dimensionality of the data [1]. The underlying hy-

pothesis is that the transformed feature vectors have a dimensionality

approaching the intrinsic dimensionality of the data. The unsuper-

vised feature extraction process is often sub-optimal with respect to
any specific problem, since it only uses statistical information about

the input data and there is often much more information available.

In the context of pattern recognition, information about the a-priori

classification of some input data examples is often available. As
such, some form of supervised learning can be employed to jointly

design the feature extractor and the classifier.

Recently, there has been considerable effort made in selecting

features (performing dimensionality reduction) which are most rel-

evant to a support vector machine (SVM). In [2] and [3] a wrapper

model [4] is used, where a SVM is used as an inner loop of a feature
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selection problem. Irrelevant features are selected based on the fact

that the support vectors are the only data points that are relevant for

the determination of the separating hyperplane. Another related pos-
sibility is to scale the features by ranking their relevance to the SVM.

This process was detailed in [5] and used in [6] to scale expression

masks for facial expression recognition. In a Bayesian framework,

joint feature selection and classification was performed by an ex-
pectation maximization algorithm in [7]. Both feature selection and

feature scaling assumes that some features have been extracted a-

priori by some other technique, or the raw input data was used. In

[8] an iterative algorithm was employed to move support vectors to-
wards the class mean and learn a new basis from regression on the

modified features.

The method presented herein jointly extracts features and per-

forms SVM classification using a wrapper methodology inspired by

techniques to choose SVM parameters. In [5] and [9], kernel pa-

rameters such as C for a soft margin classifier and σ for a Gaussian

radial basis function are optimized based on bounds which approxi-
mate the leave-one-out error. In this paper, the kernel is assumed to

depend on the basis in which the data is represented. The feature ex-

traction model is a linear one, where the basis is decomposed into a

unitary transformation for the purposes of dimensionality reduction,
and a non-orthogonal transformation, which is to be learned from the

gradient method in [5]. The radius–margin bound is used to provide

an upper bound on the leave-one-out error. The effectiveness of the

learned basis is shown experimentally in the classification of some
synthetic data sets. It is shown that the learned basis provides much

lower error rates and increased margin over a PCA basis.

2. AN OPTIMAL BASIS REPRESENTATION

Linear subspace representations of a data set are defined by the model:

y = W
T
x (1)

with n-dimensional data expressed as a random vector x ∈ R
n.

In this model, a set of features y are extracted from the data by a

linear transform W. For the purposes of dimensionality reduction,

W ∈ R
n×m with m << n. This is most often performed with

PCA, which provides an orthogonal W. This representation can be
extended to allow for the representation of non-orthogonal directions

in the data by applying another transformation S ∈ R
m×m so that:

z = S
T
W

T
x. (2)

S can be found from minimizing the radius–margin bound of a sup-
port vector machine, as will be shown below.
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2.1. Support Vector Machines

With the SVM, a labeled set of feature vectors xi, Yi is constructed
for all l features in the training data set. The class of feature xi is

defined by Y = {1,−1}. The optimal separating hyperplane w for

the features can be found with:

min
1

2
||w||2

s.t. Yi(wΦ(x) + b) ≥ 1 ∀i, (3)

with Φ a non-linear function. The dual expression to maximize for

a non-linear hard margin SVM can be written as [10]:

max L(α) =
lX

i=1

αi −
1

2

lX
i=1

lX
j=1

αiαjYiYjK(xi,xj)

s.t.

lX
i=1

αiYi = 0 and αi ≥ 0 ∀i. (4)

K(x,x′) = 〈Φ(x, )Φ(x)〉 is a kernel function satisfying Mercer’s
conditions. An example kernel function (the one used herein) is the

Gaussian radial basis function:

K(x,x
′) = exp

„
−
‖x − x′‖2

2σ2

«
(5)

where σ is the standard deviation of the kernel’s exponential func-

tion.

2.2. Radius–Margin Bound

Vapnik [10] proposed an upper bound on the number of errors with

the leave-one-out method of training:

T = R
2||w||2 (6)

where 1

||w||
is the �2 distance from the hyperplane to the closest data

point and the images of the training data fall within a sphere of radius
R.

If the bound T (α, θ) is dependent on parameters θ for which it is

to be minimized, the total derivative with respect to each parameter

θp is [5]:
∂T

∂θp

=
∂T

∂θp

˛̨
˛̨
α fixed

+
∂T

∂α

∂α

∂θp

. (7)

In [5] it was noted that at optimality, ∂T
∂α

= 0, so T can be differen-

tiated directly with respect to the parameters.

The derivative of the radius–margin bound, with respect to the

parameters is:

∂T

∂θp

=
∂R2

∂θp

||w||2 +
∂||w||2

∂θp

R
2
. (8)

The evaluation of these partials was performed in [5] wherein:

∂||w||2

∂θp

= −

lX
i,j=1

αiαjYiYj
∂K(xi, xj)

∂θp

(9)

and

∂R2

∂θp

=
lX

i,j=1

βi
∂K(xi,xj)

∂θp

− βiβj
∂K(xi,xj)

∂θp

. (10)

2.3. Gradient Step for an Optimal Basis

Using the model in Equation (2), the radius–margin bound can be

used to find a gradient step which will converge on an optimal S

such that the leave-one-out training error will be minimized. To do
this, the derivative of the margin and the radius must be found with

respect to the parameters, which are the elements of the transforma-

tion matrix S. Formally, for the derivative of the margin is:

∂||w||2

∂S
= −

lX
i,j=1

αiαjYiYj
∂K(ST yi,S

T yi)

∂S
, (11)

where y is the data under the transform in Equation (1). For a Gaus-

sian kernel and an �2 norm:

K = exp−(yi
T SST yi−2yi

T SST yj+yj
T SST yj) . (12)

This definition implies the condition that the matrix SST is positive

definite. This implication will be discussed further in Section 4. The

derivative of the margin can be written as:

∂||w||2

∂S
= −

lX
i,j=1

αiαjYiYjf
∂g

∂S
, (13)

where f and g are defined as:

f = −K(ST
yi,S

T
yj)

g = −(yi
T
SS

T
yi − 2yi

T
SS

T
yj + yj

T
SS

T
yj). (14)

The partial of g is the derivative of a scalar function with respect to

a matrix S. As such, the derivative is a matrix where each element is
the derivative with respect to each element of S. Thus the derivative

of the margin is:

∂||w||2

∂S
= −

lX
i,j=1

αiαjYiYjfAS (15)

where the matrix A = yiyi
T − 2yiyj

T +yiyi
T . In the same way,

the expression for the derivative of the radius function is:

∂R2

∂θp

=
lX

i,j=1

βifAS. (16)

The gradient update rule for S is:

S ← S − ε

»
∂R2

∂θp

||w||2 +
∂||w||2

∂θp

R
2

–
, (17)

where the derivatives are shown in Equation (15) and Equation (16)

respectively. ||w||2 and α are obtained from the SVM which is up-

dated at each iteration. Thus the following iterative procedure [5] is

employed:

1. Initialize S to a random matrix

2. Orthogonalize S with S ← (SST )−
1

2 S

3. Employ a standard SVM to determine α and ||w||2

4. Update S with the rule in Equation (17)

5. Return to step 3 or terminate if T in Equation (6) is minimum

To simplify the update rule, no constraint was placed on S al-
though as mentioned previously, SST must be positive definite. This
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was dealt with in two ways. First, in Step 2 of the iteration, SST ini-

tialized to be positive definite. In fact, SST = I. However, at a point

very near the minimum, SST will become singular. In the iteration,
this is detected by an increase in the bound, and provides the ter-

mination condition. Alternatively, a zero eigenvalue in SST could

be used as the termination condition. In the implementation chosen

for this paper, a conjugate gradient method was used instead of the
aforementioned update rule based on steepest descent, to speed up

convergence.

3. RESULTS

Four multi-dimensional datasets were used to test the algorithm.

They are generated using PRTools4, a Matlab toolbox for pattern
recognition [11]. Each dataset was used to randomly generate 50

multi-dimensional training points according to the dataset distribu-

tion. The Difficult dataset is defined as multi-dimensional and a di-

mensionality of 30 was used. The other 4 datasets are defined as two
dimensional. To increase their dimensionality, the first 50 dimen-

sions were created by random instances of the first dimension of the

two-dimensional dataset. The second 50 dimensions were created

by random instances of the second dimension. Although this is an

artificial multi-dimensional distribution, provided that the variance
of the distributions is large enough, the random instances generate

sufficient complexity. For all 4 datasets, the dimensionality of the

data was reduced to 10 with PCA before SVM classification. As

such, the non-orthogonal matrix S ∈ R
10×10 . For the RBF kernel,

the standard deviation was 10, 100, 5 and 20 for the Difficult, Ba-

nana, Highleyman and Lithuanian datasets respectively. The SVM

parameter C was set to 1 for all experiments. The kernel standard

deviation and C parameters were chosen empirically for reasonable
classification performance and were not optimized in any way.

The average (over 10 independent runs of the experiment) bound

and error is shown at each iteration for each of the datasets in Figs.

1 – 4. The average margin and number of support vectors for the

Difficult dataset is also shown in Fig. 1. Although the algorithm
terminated after a different number of iterations for each experimen-

tal run, the termination value was extended to the longest of the 10

runs for the purpose of averaging. Fig. 5 illustrates an example

experimental run on the Lithuanian dataset without the termination
condition. It is important to note that the bound begins to grow af-

ter the smallest eigenvalue reaches a zero value. This illustrates the

behavior of the gradient descent after the constraint on the positive

definiteness of SST is violated.

4. DISCUSSION

Table 1 shows that an increased margin, a decreased number of sup-
port vectors, a decreased Radius–Margin bound and a decreased er-

ror can be expected from the minimization of the bound. At the

95% confidence level, only one of the results missed significance

(error for the Banana dataset). This is similar to results reported by
Chapelle et. al. in [5] when feature vectors were scaled directly for

a handwritten digit recognition experiment. Additionally, the evolu-

tion of the test error and bound reported herein in Figs. 1 – 4 were

similar to those reported in [5]. The experiment in this paper has
the additional advantage of a significant reduction in dimensionality

from the linear transform of the data. Convergence occurred before

approximately 40 iterations in all cases. From Fig. 5 it is clear that

it is unnecessary to include the positive definite constraint on SST

since the solution is part of the feasible set until a value close to the
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Fig. 1. Difficult Dataset Iteration.
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Fig. 2. Banana Dataset Iteration.
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Fig. 3. Highleyman Dataset Iteration.

minimum bound is reached. The Difficult dataset, as was expected,

was the most difficult to classify, followed closely by the Banana and
the Lithuanian datasets. The algorithm, however, performed equally

well on all of the datasets, providing anywhere from a 20% to 90%

increase in margin, a 25% to 50% decrease in the number of support

vectors, a 50% to 70% decrease in the Radius–Margin bound, and
up to a 30% decrease in error.
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Fig. 4. Lithuanian Dataset Iteration.
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Fig. 5. Example of violation of positive definiteness.

5. CONCLUSION

When a linear subspace representation of data is applied to a SVM

with a radial basis function kernel, a simple update rule can be de-
rived to minimize the radius-margin bound. The basis update min-

imized the bound in a small number of iterations for the multiple

dimension datasets tested. Given the proliferation of subspace based

representations for a wide variety of classification tasks, the algo-
rithm presented herein has general application.
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