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ABSTRACT
An augmented complex-valued Extended Kalman Filter
(ACEKF) algorithm for the class of nonlinear adaptive fil-
ters realised as fully connected recurrent neural networks
(FCRNNs) is introduced. The algorithm is derived based on
the recent developments in augmented complex statistics, and
the Jacobian matrix within the ACEKF algorithm is computed
using a general fully complex real time recurrent learning
(CRTRL) algorithm. This makes ACEKF suitable for pro-
cessing general complex-valued nonlinear and nonstationary
signals and bivariate signals with strong component correla-
tions. Simulations on benchmark and real-world complex-
valued signals support the approach.

1. INTRODUCTION

Recent progress in biomedicine, wireless and mobile commu-
nications, seismics, sonar and radar has brought to light new
problems, where signals are often complex-valued or have a
higher-dimensional compact representation [1]. To process
such signals, research has largely been directed towards ex-
tending the results from real-valued adaptive filters to the com-
plex domain, C. More recently, complex-valued learning al-
gorithms have also been introduced for training of neural net-
works (NNs) [2][3].
Fully connected recurrent neural networks (FCRNNs) have
been employed as nonlinear adaptive filters1 [1] where for
real-time applications in the complex domain, a recently pro-
posed fully complex-valued real-time recurrent learning
(CRTRL)2 algorithm [3] has been applied successfully to fore-
casting of the complex-valued wind field. These initial results
were promising, but it was also realised that gradient based
learning may experience problems for signals with rich dy-

1Nonlinear autoregressive (NAR) processes can be modelled using
feedforward networks, whereas nonlinear autogressive moving average
(NARMA) processes can be represented using RNNs.

2The CRTRL algorithm uses a fully complex activation function (AF)
that is analytic and bounded almost everywhere in C. On the other hand, in
a split-complex AF, the real and imaginary components of the input signal x
are separated and fed through the real-valued activation function fR(x) =
fI(x), x ∈ R. A split-complex activation function is therefore given as
f(x) = fR(Re(x))+ jfI(Im(x)), for example f(x) = 1

1+e−β(Re(x)) +

j 1
1+e−β(Im(x)) .

namics and non-Gaussian distributions (e.g intermittent).
A possible solution to this problem may be based on Kalman
filters [4], which have been shown to exhibit superior perfor-
mance in several practical applications, including state esti-
mation for road navigation [5], parameter estimation for time
series modeling, and neural network training [6]. Variants of
the extended Kalman filter (EKF) algorithm have been used
to train temporal NNs [7], with promising results.
Recently, EKF training of NNs has been extended to the com-
plex domain [8]. Notice that, to design an algorithm suit-
able for the complex domain, we need a precise mathemati-
cal model that describes the evolution of system parameters.
Hence, extensions of learning algorithms to the complex do-
main are not trivial and often involve some constraints, for in-
stance, a simplified model of both complex statistics and com-
plex nonlinearities within neurons. This might be sub-optimal
for classes of signals with significant correlation between the
real and imaginary parts, which affects both the choice of the
complex activation function and complex statistics.
To this cause, we first provide mathematical foundations for
complex-valued second order statistics and highlight the need
to consider the so-called augmented statistics in the derivation
of learning algorithms. Next, both the augmented complex-
valued Kalman filter (ACKF) and the the augmented extended
complex-valued Kalman filter (ACEKF) algorithm are derived,
whereby the recently developed CRTRL algorithm is used
to compute the Jacobian matrix within the ACEKF. This is
supported by simulation examples on a benchmark complex-
valued nonlinear signal, together with simulations on complex-
valued real-world wind and radar measurements.

2.COMPLEX-VALUED SECOND ORDER STATISTICS
The four covariance matrices of two zero-mean complex-valued
random vectors (RVs), x = xr + jxi and y = yr + jyi, are
given by [9]

Pxryr = cov[xr, yr] Pxryi = cov[xr, yi]

Pxiyr = cov[xi, yr] Pxiyi = cov[xr, yi] (1)

where j =
√−1, (·)T denotes the vector transpose opera-

tor, and superscripts (·)r and (·)i denote respectively the real
and imaginary part of a complex number or complex vector.
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These four real-valued matrices are equivalent to the follow-
ing two complex-valued matrices

Pxy = E
[
xyH

]
, Pξ

xy = E
[
xyT

]
(2)

where (·)H the Hermitian transpose. We can solve (2) for
Pxryr , Pxiyi , Pxiyr and Pxryi to obtain

Pxryr =
1
2

R(Pxy + Pξ
xy), Pxiyi =

1
2

R(Pxy − Pξ
xy)

Pxiyr =
1
2

I(Pxy + Pξ
xy), Pxryi =

1
2

I(−Pxy + Pξ
xy)(3)

where symbols R and I denote respectively the real and imag-
inary part of a complex quantity. This shows that the four
real-valued covariance matrices (3) are in a one-to-one rela-
tionship with the two complex-valued covariance matrices in
(2). In the literature, nearly always only Pxy is considered,
and is referred to as the covariance matrix, whereas Pξ

xy
3 is

the so-called pseudo-covariance matrix.

2.1. Augmented Covariance Matrix

It is often assumed that the theory of complex-valued ran-
dom vectors (RVs) is no different than that of the real RVs,
as long as the definition of the covariance matrix of an RV
x is changed from E[xxT ] in the real case to E[xxH ], using
the Hermitian transpose (·)H [10]. This assumption, how-
ever, is not justified since the covariance matrix E[xxH ] will
not completely describe the second-order statistical behav-
ior of x. For complex-valued Gaussian random variables, we
need to consider both the variable x and its complex conjugate
x∗ in order to make use of for all the available statistical in-
formation. This additional information is therefore contained
in the cross-moments [9]. We therefore set out to derive a
complex-valued Kalman filter which takes into account the
augmented complex statistics. Thus, we consider complex
RV x and produce a 2n × 1 vector xa = [x, x∗]. It is the
augmented 2n × 2n covariance matrix Pxaxa = E[xa(xa)T ]
(rather than just the n × n matrix Pxx = E[xxH ]) that con-
tains the complete second-order statistical information. Such
an augmented covariance matrix4 is given by [10]

Pxaxa = E

[
x
x∗

] [
xT xH

]
=

[
Pxx Pξ

xx

Pξ∗
xx P∗

xx

]
(4)

3. THE AUGMENTED COMPLEX-VALUED
KALMAN FILTER (ACKF) ALGORITHM

Based on the analysis of augmented complex statistics, we
first derive a Kalman filter learning algorithm for complex-

3A complex RV x is called proper if its pseudo-covariance Pξ
xx vanishes

[9, 10]. For convenience, in many applications, complex-valued random vec-
tors (RVs) are treated as proper. However, Pξ

xx may not be necessarily zero,
in this case is called improper complex-valued RVs.

4The covariance matrix Pxaxa is invertible and thus positive definite. Be-
sides Pxx being positive semi-definite (PSD) and Pξ∗

xx being symmetric, the
Schur complement P∗

xx − Pξ∗
xx P−1

xx Pξ
xx must be PSD to ensure that Pxaxa is

PSD and thus a valid covariance matrix for xa [9].

valued inputs using the augmented states and augmented co-
variance matrix. A general state-space model is given as [6]

xk+1 = Fk+1xk + ωk, yk = Hkxk + νk (5)

where ωk and vk are independent, zero-mean complex-valued
Gaussian processes of covariance matrices Qk and Rk respec-
tively, and F and H are the transition and measurement ma-
trix. From (5), the augmented state-space model is obtained
as

xa
k+1 = Fa

k+1x
a
k + ωa

k, ya
k = Ha

kxa
k + νa

k (6)

where xa
k = [xk, x∗k], ya

k = [yk, y∗k], Fa
k = [Fk, F∗

k], Ha
k =

[Hk, H∗
k], ωa

k = [ωk,ω∗
k] and νa

k = [νk,ν∗
k]. The augmented

covariance matrices of the zero-mean complex-valued Gaus-
sian noise processes are denoted respectively by Qa

k and Ra
k.

In the initialization of the algorithm (k = 0), we set

x̂a
0 = E [xa

0 ] , P0 = E
[
(xa

0 − E [xa
0 ]) (xa

0 − E [xa
0 ])T

]
(7)

The computation steps for k = 1, . . . , L are given below us-
ing similar notation as in [6]:-

State estimate propagation:
x̂a−

k = Fa
k,k−1x̂

a−
k−1 (8)

Error covariance propagation:
P−

k = Fa
k,k−1Pk−1(Fa

k,k−1)
H + Qa

k−1 (9)

Kalman gain matrix:

Gk = P−
k (Ha

k)H
[
Ha

kPk(Ha
k)H + Ra

k

]−1
(10)

State estimate update:

x̂a
k = x̂a−

k + Gk

(
ya

k − Ha
kx̂a−

k

)
(11)

Error covariance update:
Pk = (I − GkHa

k) P−
k (12)

This completes the description of the augmented complex-
valued Kalman filter.

4. FCRNN TRAINED WITH AUGMENTED
EXTENDED COMPLEX-VALUED KALMAN FILTER

4.1. The FCRNN Architecture
Figure 1 shows an FCRNN, which consist of N neurons with
p external inputs and N feedback connections. Let yl,k de-
note the complex-valued output of a neuron, l = 1, . . . , N at
time index k and sk the (1×p) external complex-valued input
vector. The overall input to the network uk then represents a
concatenation of vectors yk, sk and the bias input (1+ j), and
is given by

uk = [sk−1, . . . , sk−p, 1 + j, y1,k−1, . . . , yN,k−1]T

un,k ∈ uk = ur
n,k + jui

n,k, n = 1, . . . , p + N + 1 (13)

For the lth neuron, its weights form a (p + N + 1) × 1 di-
mensional weight vector wT

l = [wl,1, . . . , wl,p+N+1], l =
1, . . . , N , which are encompassed in the complex-valued weight
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Fig. 1. A fully connected recurrent neural network (FCRNN)
for prediction.

matrix of the network W = [w1, . . . ,wN ]. The output of ev-
ery neuron can be expressed as yl,k = Φ(netl,k) where Φ
is a complex nonlinear activation function of a neuron.
To establish a mathematical framework for the Kalman filter
training of FCRNNs, the dynamical behaviour of the FCRNN
can be described by the state-space model given as

wa
k+1 = wa

k + ωa
k, ya

k = h(wa
k, uk) + νa

k (14)

where h is a nonlinear operator associated with observations,
wa

k is the augmented weight vector and ya
k is the augmented

output of the network. The basic idea of training such archi-
tecture is to linearise the state space model in equation (14)
at each time instant. Once a linear model is obtained, the
ACKF equations are applied. In practice, the process noise
covariance Qa

k and measurement noise covariance Ra
k matri-

ces might be time-varying, but here, we assume they are con-
stant. The Jacobian Ha

k is defined as a set of partial derivatives
of the outputs with respect to the weights, wa

k, and needs to
be calculated for every time instant.

4.2. Derivation of the Augmented Complex-valued Ex-
tended Kalman Filter (ACEKF) Algorithm

The derivation of the complex-valued Jacobian required within
the matrices is nontrivial and the linearization can produce
highly unstable filter performance if the discrete time inter-
vals are not sufficiently small. Therefore, careful parame-
ter selection is required when using the ACEKF algorithm.
The derivation of the ACEKF is an extension from the ACKF
given in the previous section. For consistency, the ACEKF is
summarised using the notation from [6] and is given by the
following recursion

Gk = P−
k (Ha

k)H
[
Ha

kP−
k (Ha

k)H + Ra
k

]−1
(15)

ŵa
k = ŵa−

k + Gk

[
ya

k − h(ŵa−
k , uk)

]
(16)

Pk = (I − GkHa
k) P−

k + Qa
k (17)

The initialization of the ACEKF is given as
ŵa

0 = E [w0] , P0 = E
[
(wa

0 − E [wa
0 ]) (wa

0 − E [wa
0 ])T

]
(18)

For generality, the augmented Jacobian matrix Ha
k is com-

puted via the augmented CRTRL algorithm5 for recurrent net-
works [3] which uses fully complex nonlinear filters within
neurons. The vector ŵa

k represents the estimate of the aug-
mented state of the system update at step k. The Kalman gain
matrix Gk is a function of the approximate error covariance
matrix Pk, the Jacobian matrix Ha

k and a global scaling matrix
Ha

kP−
k (Ha

k)H + Ra
k.

5. SIMULATIONS
For the experiments, the nonlinearity at the neuron was cho-
sen to be the complex tanh function Φ(x) = eβx−e−βx

eβx+e−βx where
x ∈ C. The value of the slope of Φ(x) was β = 1. The archi-
tecture of the FCRNN (Figure 1) consisted of N = 3 neurons
with the tap input length of p = 5. To support the analysis, we
tested the ACEKF on complex nonlinear signals. To further
illustrate the approach and verify the advantage of using the
ACEKF over the CRTRL, single-trial experiments were per-
formed on real-world complex-valued wind6 and radar7 data.
The complex benchmark nonlinear input signal was [1]

z(k) =
z2(k − 1)(z(k − 1) + 2.5)
1 + z(k − 1) + z2(k − 2)

+ n(k − 1) (19)

with complex white Gaussian noise (CWGN) n(k) ∼ N (0,1)
as the driving input. The input signals used here are improper
complex-valued in order to show the advantage of the pro-
posed ACEKF over the standard algorithms. The measure-
ment used to assess the performance was the prediction gain

Rp(k) � 10log10

(
σ2

x

σ̂2
e

)
[dB] where σ2

x denotes the variance

of the input signal x(k), whereas σ̂2
e denotes the estimated

variance of the forward prediction error e(k). The signal-to-
noise (SNR) ratio for all the simulations is 3[dB] . Table 1
shows a comparison of the prediction gains Rp [dB] between
the ACEKF, standard complex-valued (CEKF) (without con-
sidering the augmented states) and CRTRL for various classes
of signals. In all the cases, there was a significant improve-
ment in the prediction gain when ACEKF method was em-
ployed over the performance of the CRTRL algorithm. The
proposed ACEKF exhibited a more stable and better perfor-
mance than the standard CEKF for a range of complex signals
used.

Figure 2 shows a subsegment of the predictions generated by
both the ACEKF and CRTRL for complex-valued nonlinear
(19) signal. The performance of ACEKF is clearly much bet-
ter than that of CRTRL for both cases. To verify the advantage

5Matrix Ha
k denotes the matrix of partial derivatives of the network’s aug-

mented output ya
k with respect to weight parameters.

6Publicly available from “http://mesonet.agron.iastate.edu/”. The wind
vector can be expressed in the complex domain C as v(t)ejθ(t) = vE(t) +
jvN (t).

7Publicly available from “http://soma.ece.mcmaster.ca/ipix/”.
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Table 1. Comparison of prediction gains Rp for the various
classes of signals

Signal Nonlinear Wind Radar
Rp [dB] (ACEKF) 5.12 11.17 10.58

Rp [dB] (standard CEKF) 4.50 10.05 9.91
Rp [dB] (CRTRL) 3.15 7.52 7.22
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Fig. 2. Comparison of one-step ahead prediction performance
between the ACEKF and CRTRL for nonlinear signal (19)

of using the ACEKF over CRTRL, we compared the perfor-
mances of FCRNNs trained with these algorithms in experi-
ments on real world wind data. Figure 3 shows the prediction
performance of the ACEKF applied to the complex-valued
real-world (velocity and angle components) wind signal. The
ACEKF algorithm was more stable and has exhibited better
and more consistent performance than the CRTRL algorithm.
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Fig. 3. Prediction performance for complex wind signal using
ACEKF

6. CONCLUSIONS AND DISCUSSIONS
The augmented complex-valued extended Kalman filter
(ACEKF) has been introduced for nonlinear adaptive filter-
ing using FCRNNs in the complex domain. The ACEKF
has been derived using the augmented complex-valued statis-
tics, whereby, a complete second order statistics for complex-
valued quantities is taken into account. The computational
cost of the ACEKF is relatively more expensive than that
of the CRTRL. In the future, a decoupled complex-valued
EKF could be implemented to relax the computation com-
plexity. The performance of the ACEKF has been evaluated
on benchmark complex-valued nonlinear input signals, and
also on real-life complex-valued wind and radar signals. Sim-
ulation results have justified the potential of ACEKF in non-
linear complex-valued neural adaptive filtering applications.
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