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ABSTRACT

We present a new outlier detection method which is ap-
propriate for classification problems. It combines estimating
the overall probability density and sequential ranking of the
data according to observed changes in performance on vali-
dation sets. The method has been implemented on ten widely
used benchmark datasets and a spam email filtering applica-
tion. Evaluated by six popular machine learning methods,
classification performances are shown to improve after re-
moving outliers in comparison to removing the same number
of examples at random from the datasets.

1. INTRODUCTION

Inference problems solved by data driven models involve the
collection of a certain amount of data that characterize a prob-
lem domain. Reliability with which we can estimate parame-
ters of a model, either in the form of a probabilistic generative
model or in the form of a function approximator in the space
of the data, and the subsequent use of this model in making
predictions depends crucially on the collected data being rep-
resentative about the underlying mechanism. When the data
is not representative, our ability to learn a model that can gen-
eralize to unseen data is severely restricted. By this notion of
data not being representative we do not refer to the variabil-
ity in the data (systematic - e.g. coarticulation in speech, or
random - e.g. instrument errors). These are factors what are
handled by the modelling process. Occasional large errors,
atypical of the process, such as labelling errors in a classifica-
tion setting or contamination of a sample in a series of chem-
ical or biological experiments are regarded as outliers with
respect to the process that generates data and with respect to
the data driven model we chose to apply.

In the comparison of machine learning algorithms, it is
customary to evaluate performances on several benchmark
datasets which are publicly available within the research com-
munity. In most of these cases we only have access to the
data and can neither refer back to the originators of the data
nor repeat physically the experiments that generated the mea-
surements. In such a situation it is important to be confident
that the datasets do not include outliers so that comparisons
of algorithm performance are meaningful.

Tarassenko [1] has successfully considered the problem of
outlier detection in engineering and health monitoring appli-
cations, working with respect to an assumed probability den-
sity model. Novelty detection is achieved by fitting a Gaussian
mixture model through data corresponding to the normal cases,
or, in the case of engines, normal operating conditions. Once
the mixture model is trained, a test data is said to be abnor-
mal if its likelihood is lower than a particular threshold with
respect to the model.

Density estimation alone is not sufficient to define and de-
tect outliers in classification problems. A Gaussian mixture
model of the entire data would ignore class labels, occasional
errors in which may well be the outliers. For classification
problems, the main effect of outliers is observed as variability
in classification accuracy evaluated on a validation set, when
we randomly partition the data into training and validation
sets. In a given partition, the presence of outlier data in the
validation set has small effect on accuracy, but if the outlier
data were to be in the training set, validation set accuracy will
be affected a lot more because the resulting estimate of the
classifier parameters will be poor.

Detecting and dealing with outliers has been considered in
the statistical literature [2], mainly in the context of regression
problems. The classic way of dealing with outliers is to make
the inference process robust to their presence (e.g. by the use
of L1 norm in linear regression, which attenuates large errors
contributed by outliers). Robustness properties of Bayesian
methods to the presence of outliers have been considered in
[3]. Derivation of robust regression models can usually be as-
sociated with an appropriate assumption about a noise model
(e.g. the use of L1 norm assumes additive noise of Laplacian
distribution).

In classification problems, however, the case for detecting
outliers is more compelling because outliers may arise due to
labelling errors. In most data gathering environments errors
on inputs, or features, tend to be instrument noise which can
be modelled as a probability density. Errors in outputs, or la-
bels, tend to be occasional human errors in interpreting the
data to associate a label. Literature on detecting outliers in
classification problems is not vast, making this a topic which
has not been given the seriousness it deserves. That the prob-
lem exists is obvious since most publications that report per-
formance of a new machine learning algorithm on a dataset

V ­ 5571­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



Fig. 1. Illustration of outliers in a two-class classification problem
in which stars and circles are used to denote the data. Consider the
filled patterns A, B, C, D, E & F. Of these, A, D, E & F are exam-
ples of low likelihood with respect to a probability density of all the
data. A Gaussian mixture model with two components, for example,
will detect these. A, B, C and D are examples that can cause large
errors if they are in a bootstrap sample of the training set as they
appear mislabelled. These will be detected by the sequential back-
ward elimination procedure discussed in this paper. Our definition
of outliers, with respect to the classification problem, combines the
two and labels A & D as outliers.

quantify the variability in performance when the data is ran-
domly partitioned into different training and validation sets.

2. METHODOLOGY

Our working definition of outliers is a stringent one, illus-
trated in Fig.1, examples that have a low likelihood with re-
spect to the entire dataset and at the same time contribute to
large generalization errors. We use Gaussian mixture mod-
els with two components and full covariance matrices fitted
to the entire dataset to identify examples of low likelihood.
Examples are ranked in ascending order of likelihood with
respect to the GMM model. The model is trained using the
expectation maximization (EM) algorithm and examples that
fall in the lowest 10% of all the likelihoods are considered for
further processing. Fig. 3 (a) shows the ordered likelihoods
for the sonar dataset from the machine learning repository
at University of California, Irvine [4].

The sequential backward elimination procedure is shown
in pseudo code in Fig.2. It employs Fisher linear discrimi-
nant analysis as base classifier and goes through a series of
estimation of a discriminant direction on a training set and
subsequent evaluation of its performance on a validation set.
Each of the Nruns runs of the algorithm will pick out an or-
dered set of Nremove data points as candidate outliers, removal
of which produced the best validation set performance, quan-
tified by the F1 measure, striking a balance between the two

types of classification errors in two class problems. Similar to
the GMM, we set Nremove as 10% of total number of patterns.
We compute the frequency of trials of each pattern in the ma-
trix D and select the most frequent ones as candidate outliers.
Where there is a tie in frequencies, we use position in ranking
to break it (i.e., the higher ranked patterns are picked first.)

Finally, patterns which appear on the low likelihood list
and occur with higher frequency in the elimination process
are declared as outliers. Results of such ranks for the sonar
dataset are shown in Table 2. Pattern 3 (first row) is picked as
the first outlier as it has the 3rd lowest likelihood and it ranked
the 4th in terms of frequency of appearance across the 50 runs
of the backward elimination algorithm.

Input: Number of candidate outliers Nremove;
Number of ranking iterations Nruns;

Output: A matrix D{Nruns×Nremove} of data IDs
the columns of the matrix are ordered

for p = 1 : Nruns

Randomly partition the data set into Str Sva;
Empty Elimination set E = {empty};
for k = 1 : Nremove

for i = 1 : |Str|
w =train Fisher LDA on Str

\i;
e(i) = performance of w on Sva;

end
Find pattern j for which e(j) is minimal;
Move j from Str to E ;

end
end

Fig. 2. Pseudocode for the sequential ranking algorithm. |Str| de-
notes the size of the set Str and Str

\i denotes the set Str with the ith

element removed.
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Fig. 3. Data ranked by log likelihood of a GMM, (a), and validation
set error during backward elimination, (b), for the sonar dataset.
The small vertical bars represent standard deviations across 50 dif-
ferent runs.
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Pattern ID GMM RANKING SBE RANKING
3 3 4

101 9 39
23 11 15
172 13 40
134 19 18
131 20 21
19 - 1
91 1 -
22 - 2
166 2 -
196 - 3

Table 1. Outliers Selection on the sonar Dataset. Patterns above
the separation line are outliers detected by two approaches; Patterns
below the line are only detected by one approach. The first column
is an identifier for the pattern picked out as outlier. The second and
third columns indicate the position in the two ranking procedures.

Dataset No. of No. of No. of
Patterns Attributes Outliers

Soybean-small 47 35 0
Sonar 208 60 6
Glass 214 9 4
Ionosphere 351 34 11
Pima Indians 768 8 13
Vehicle 846 18 10
SPECT heart 267 22 0
Breast Cancer 569 30 8
Iris plant 150 4 0
Letter-Recogn(M N) 1575 16 6

Table 2. Selected datasets from UCI repository and the number of
examples detected as outliers.

3. EXPERIMENTAL ILLUSTRATIONS

We applied the outliers detection method to ten datasets from
the UCI repository and a spam email filtering problem to which
we artificially injected outliers (i.e. emails from outside the
original domain).

3.1. UCI Datasets

Some aspects and the number of examples identified as out-
liers by applying our methodology for ten of the benchmark
UCI problems are shown in Table 2.

In order to confirm that the detected examples can indeed
be regarded as outliers for the problem, we compare classi-
fication performance when these are removed from the train-
ing sets using different classifiers not used in the detection
process. Again we use the sonar dataset and consider Naive
Bayes (NB), SVM, RandomForest (RF), AdaBoost (AB), RBF

NB SVM RF AB RBF C4.5
Ran 0.651 0.815 0.823 0.743 0.719 0.732
Out 0.684 0.824 0.845 0.761 0.777 0.758
Base 0.652 0.825 0.838 0.739 0.711 0.739

Table 3. Performance of Outlier Detection Method measured by F1

for sonar dataset. ”Ran” denotes the performance of the dataset af-
ter randomly removing six patterns; ”Out” denotes the performance
of the dataset after removing six outliers; ”Base” is the performance
on the original dataset.

Network (RBF) and C4.5, all implemented in the Weka soft-
ware package [5], with default settings for all tunable para-
meters. Ten fold cross validation was used to measure im-
provements in generalization and the results are shown in Ta-
ble 3. It is found that good performances are achieved after
removing six outliers. There is significant improvement on
the performance by the NB, AB, RBF and C4.5. Note we do
not get an improvement for the higher performing classifiers
(SVM & RF). This is probably due to the robustness of these
classifiers and the fact that we never reduce empirical error on
training data to zero.

We illustrate the data items identified as outliers using
projections onto a linear discriminant plane, following [6].
The discriminant direction that maximizes the Fisher ratio is
computed by d1 = α1A

−1∆, where A is within-class scat-
ter matrix, ∆ = {m1 − m2} is the difference in the esti-
mated means. It can also shown that the second discrim-
inant directions, projections upon which will give the best
separation for the corresponding subspaces is given by d2 =
α2{A−1 − b1[A−1]2}∆, where, b1 = ∆T (A−1)2∆

∆T (A−1)3∆
. d2 is ob-

tained by maximizing the Fisher ratio subject to the constraint
that d2 should be orthogonal to d1. Thus the two directions
define a plane in the space containing the data, linear projec-
tions onto which will be maximally separated, forming a con-
venient mechanism to visualize the data in two dimensions.
In Fig 4, we show these discriminant plane projection for the
sonar dataset.

3.2. Spam Filtering

We consider a spam email filtering problem defined by the
Ling-Spam corpus1 in which emails are pre-processed as
505 dimensional Term Frequency-Inverse Document Frequency
(TF-IDF) vectors, usual in text categorization tasks. We in-
duced outliers into this dataset by taking 40 emails from our
mailboxes, 20 of which were spam. When including these
with the dataset, we deliberately mislabelled 10 of the 20
spam and 20 non-spam emails. The resulting dataset has la-
bels shown in Table 4. To reduce the size of the problem, we
took a random subset of 500 examples form Ling-Spam and

1The corpus is publicly available at http://www.aueb.gr/users/ion/data/
lingspam public.tar.gz.
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Fig. 4. Projections of the data and detected outliers for the sonar
dataset on the Fisher discriminant plane. Circles and crosses denote
patterns of two classes; the red circles and crosses are outliers.

E-Mail ID E-Mail
1-10 correctly labelled non-spam email from CS
11-20 mislabelled non-spam email from CS
21-30 correctly labelled spam email from CS
31-40 mislabelled spam email from CS
41-540 correctly labelled email from Ling-Spam

Table 4. The Pattern Identifiers (ID) of outlier detection experi-
ments. Emails whose ID range from 1 to 40 are emails from our
mailboxes at the University of Sheffield; These IDs are used to track
the rankings shown in Table 5.

used 20 of the 505 features to represent the data. The 20 fea-
tures were selected by a sequential feature selection (wrapper)
process as the most discriminant features in the set.

4. CONCLUSION

We have shown that outliers in data corresponding to a clas-
sification task can be reliably detected by a method that com-
bines estimating the overall probability density and sequen-
tial ranking of the data according to observed changes in per-
formance on validation sets. When outliers detected in this
way are excluded, generalization ability of a range of classi-
fiers not used in the ranking procedure increases by a greater
amount than when the size of the dataset is reduced by the re-
moval of random patterns. We believe what we have demon-
strated here will have significant bearing on empirical studies
that use benchmark datasets (with no reference to the data
collection process) to reach conclusions on the relative mer-
its of different families of classifiers. A stringent criterion has
been used because we assume that there isn’t the possibility of
returning to the data gathering process, hence false identifica-
tions have to be minimized and as much of the available data
can be used. This criterion can be relaxed in various ways in
a different scenario.

Pattern ID GMM RANKING SBE RANKING
39 13 1
35 31 4
13 39 10
24 14 78
32 52 15
16 41 21
21 23 60
34 29 36
19 55 35
348 35 87
20 37 94
11 40 63
12 42 98
14 43 75
216 48 57
4 51 54
36 56 90
383 1 -
30 - 2
197 2 -
33 - 3
145 3 -

Table 5. Outliers Selection on the Ling-Spam experiments. 17
messages are detected from 540 messages, messages (ID: 11, 12, 13,
14, 16, 19 and 20) are detected as false positive; messages (ID: 32,
34, 35, 36 and 39) are detected as false negative; one message (ID: 4)
from true positive and two message (ID: 21, 24) from true negative
are wrongly selected by this method. Thus, of the 20 artificially mis-
labelled examples 12 are correctly picked up by the algorithm. Three
of the 20 are incorrectly identified as outliers and two examples from
the original dataset are also identified.
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