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ABSTRACT

This paper describes a novel method for the analysis of se-
quential data that exhibits strong non-Gaussianities. In par-
ticular, we extend the classical continuous hidden Markov
model (HMM) by modeling the observation densities as a
mixture of non-Gaussian distributions. In order to obtain a
parametric representation of the densities, we apply the inde-
pendent component analysis (ICA) mixture model to the ob-
servations such that each non-Gaussian mixture component
is associated with a standard ICA. Under this new frame-
work, we develop the re-estimation formulas for the three fun-
damental HMM problems, namely, likelihood computation,
state sequence estimation, and model parameter learning. The
simulations also validate the theoretical results.

1. INTRODUCTION

Hidden Markov models (HMMs) model non-stationary sto-
chastic sequences by using distinct random transitions among
a set of different stationary processes. An HMM model can be
considered as a stochastic finite state automation [1], which
generates a sequence of observations vectors from its hidden
states. Continuous HMM assumes the observations at each
hidden state are generated by the continuous probability den-
sity functions. Liporace [2] introduced maximum likelihood
formulation and used Gaussian densities to model the obser-
vations. The observation model was later extended in [3] by
using a mixture of Gaussian densities. Given a sufficient num-
ber of mixtures, the Gaussian mixture model can approximate
arbitrarily closely any continuous density function. However,
the results may highly depend on the number of mixtures and
how the parameters are estimated. In some cases, it is de-
sirable to use non-Gaussian densities to estimate the distribu-
tions if the observations show strong non-Gaussian character-
istics.

In this paper, we introduce a new HMM modeling method
using non-Gaussian mixtures. The major challenge of us-
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ing non-Gaussian distributions is the estimation of the non-
Gaussian densities in parametric form. We bring independent
component analysis (ICA) mixture model into HMM frame-
work and use ICA mixture as a density estimation tool. In
the observation space, each non-Gaussian mixture is asso-
ciated with a standard ICA. We called this new framework
as ICA mixture HMM (ICAMHMM). ICA is a recently de-
veloped statistical technique which captures the high order
statistics of input signals or data. We choose the ICA mix-
ture model instead of the ICA model because observations
can be categorized into mutually exclusive classes, similar to
Gaussian mixture models. This allows modeling classes with
non-Gaussian structures. The observation densities described
by ICA mixture can model a broader range of probability
density functions, and can be considered as a complement of
Gaussian mixture modeling. When using ICA mixture to cap-
ture non-Gaussian structures and classify data, better results
were reported in [4], compared with Gaussian mixture mod-
els. In HMM framework, we choose ICA mixture as the ob-
servation model such that each non-Gaussian mixture compo-
nent is associated with a standard ICA. We then show that by
optimizing the auxiliary function the re-estimation formulas
for likelihood computation, hidden state sequence estimation,
and model parameter learning are developed. Experimental
results also verify the effectiveness of the proposed frame-
work.

2. THE OBSERVATION MODEL

A continuous HMM is generally used to model continuous
signals. We denote the given observation sequence as O =
o1, o2, . . . ,oT , where T is the length of the sequence, and
ot, 1 ≤ t ≤ T, is the D-dimensional feature vector for the t-
th observation sample. Let q = q1, q2, · · · , qT be the hidden
state sequence. A continuous HMM model with N hidden
states is determined by the parameters λ = (A, B, π), where
A = {aij}, 1 ≤ i, j ≤ N , is the state transition probability
matrix, and aij = P (qt+1 = j | qt = i) is the probabil-
ity of state j at time t + 1 given the state is i at time t. The

V  553142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



parameter B = {bj(o)} is the continuous observation density
in state j, and o is the vector being modeled. The parameter
π = {πi}, 1 ≤ i ≤ N , is the initial state distribution where
πi = P (q1 = i).

A classical continuous HMM model assumes the obser-
vations are generated from a finite mixture of Gaussian den-
sities. In this paper, we propose to extend the observation
model as a mixture of non-Gaussian densities. In order to es-
timate the densities in a parametric form, we choose ICA mix-
ture model as a density estimation tool to describe the densi-
ties such that each non-Gaussian mixture component is asso-
ciated with a standard ICA. The ICA mixture model is first to
divide the observed data into mutually exclusive classes, and
then model each class as a linear combination of independent,
non-Gaussian ICA sources.

Let qt be the hidden state at time t, the proposed non-
Gaussian mixture observation model that brings ICA mix-
ture model into HMM framework to capture the non-Gaussian
structures can be represented as follows

bqt(o) =
K∑

k=1

p(o | Cqtk, θqtk)P (Cqtk), (1)

where o is the vector being modeled. P (Cqtk) is the class
probability to the k-th class. p(o | Cqtk, θqtk) is a non-Gaussian
probability density function that describes the statistics of the
observations for the k-th class at time t, given the state at
time t is qt, where θqtk represents the parameters of the den-
sities in state qt. Note that (1) is very similar to the Gaussian
mixture observation model since both are essentially mixture
models. The only difference is that the mixture component
p(o | Cqtk, θqtk) in (1) is a non-Gaussian density function in-
stead of a Gaussian density. The challenges and difficulties
reside in the inferring the non-Gaussian density analytically.
However, the non-Gaussianities can be captured by ICA by
seeking statistically independent sources. Thus, each non-
Gaussian mixture component density in (1) can be further
modeled as a standard ICA.

In classical ICA without considering the mixture model-
ing, the observation sequence O = o1, . . . ,oT is modeled as
an D-dimensional random variable ot which is further mod-
eled as a linear combination of D statistically independent
sources st plus the bias µ, i.e.:

ot = Mst + µ, t = 1, . . . , T. (2)

where M (D × D) is known as the mixing matrix in other
ICA literatures. To avoid the ambiguity of the terms, in this
paper we always refer to M as the basis matrix to distinguish
the word “mixture” in the mixture model. The ICA task is
to find the filter matrix W ≈ M−1 using only the observed
signals O. Since the observed signals are a linear transfor-
mation of the sources, their multivariate probability density

functions satisfy the following relationship:

p(o) =
p(s)
|J | (3)

where | · | denotes the absolute value and J is the Jacobian
of the transformation determined by the basis matrix. The
vector o and the vector s are the observation vector and ICA
source vector being modeled, respectively. Therefore, the log
likelihood can be written as:

logp(o) = logp(s) − log(det|M |). (4)

Equations (2)-(4) describe the case when all the observa-
tions are assumed to be generated from one class (i.e. K = 1).
The observation model introduced in (1) requires a mixture
modeling since the observations are assumed to be generated
from multiple classes. The standard ICA can be generalized
into ICA mixture model that allows modeling of classes with
non-Gaussian structures. The ICA mixture model, originally
proposed by Lee and Lewicki [4], assumes that the observed
data O = o1, . . . ,oT are drawn independently and generated
by a mixture density model. The likelihood of the data is
given by the joint density:

p(o1, o2, . . . ,oT | Θ) =
T∏

t=1

p(ot | Θ), (5)

The mixture density is:

p(o | Θ) =
K∑

k=1

p(o | Ck, θk)p(Ck) (6)

where Θ = (θ1, . . . , θk) are the unknown parameters for each
p(Ot | Ck, θ). And Ck denotes the class k and K is the num-
ber of classes. Then the data in each class are described by:

ot = Mksk,t + µk, ot ∈ Ck, (7)

where Mk is a square basis matrix for the k-th class, and µk

is the bias vector for class k. The task is first to classify the
unlabeled data points into one of the K classes, and then to
determine the parameters for each classes. The parameters
include (M k, µk) for the k-th class, and the class probability
p(Ck | ot, θ) for each data point. Within each class, the data
points are modeled by the standard ICA. Therefore, consid-
ering (4), we rewrite the total likelihood of the data based on
the ICA mixture model as:

logp(o | Θ) =
T∑

t=1

log(
K∑

k=1

p(Ck)(logp(sk,t)−log(det|M k|))).
(8)

Note that we intentionally drop the state index j in (8). The
reason is that we choose the same observation model for all
the hidden states for simplicity of implementation.
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3. MODEL PARAMETERS

In the previous section, we integrate the ICA mixture model
into HMM framework to model the observation densities as
the mixture of non-Gaussians. We call this new proposed
framework as ICA Mixture Hidden Markov Model (ICAM-
HMM). Based on the observation model described in the pre-
vious section, the ICAMHMM framework now has following
model parameters:

λ = (A, C, µ, M, π), (9)

where A = {aij}, 1 ≤ i, j ≤ N , is the transition matrix. The
parameter C = {P (Cjk)}, 1 ≤ j ≤ N , 1 ≤ k ≤ K , is
the mixture matrix. The parameter µ = {µjk}, 1 ≤ j ≤ N ,
1 ≤ k ≤ K , is the mean coefficients for the mixture densi-
ties, where µjk is the D-dimensional mean vector for the k-th
mixture component at state j. The parameter M = {M jk},
1 ≤ j ≤ N, 1 ≤ k ≤ K , is the ICA basis coefficients, where
M jk is the D × D basis matrix for the k-th ICA source at
state j. The parameter π = {πi}, 1 ≤ i ≤ N , is the initial
state distribution. Note that C, µ, and M are essentially the
parameters for the modeling of the observation distributions
in parametric form.

4. LEARNING THE MODEL

To apply the maximum likelihood estimation, we define the
auxiliary function (Q-function) with similar form as [2] [3]:

Q(λ, λ∗) =
∑

q∈�

∑

K∈h̄

Lλ(O, q, K) log Lλ∗(O, q, K), (10)

where λ is the current parameter set, and λ∗ is the new para-
meter set. The likelihood function Lλ(O, q, K) is the joint
probability of the observation sequence O, a particular state
sequence q over the set �, and a particular mixture sequence
K over the set h̄, given the model parameters are λ. The Q-
function defined in (10) can be considered as a partition in the
state space, and then a further partition in the mixture space.

4.1. Model Learning

To derive the re-estimation formulas, we can calculate the Q-
function and split the results into three terms such that the pa-
rameters π∗

i , a∗
ij , and P (C∗

jk) are independently separated in
the sum. Then each term can be optimized individually. The
procedures are very similar to the one used to derive the clas-
sical HMM model parameters. The final results are presented
as follows.

To efficiently calculate the HMM model parameters, some
intermediate variable defined following the conventions in [5].
The HMM forward variable αt(i) and the backward variable
βt(i) are defined as:

αt(i) = P (o1, o2, . . . ,ot, qt = i | λ), (11)

βt(i) = P (ot+1, ot+2, . . . ,oT , | qt = i, λ). (12)

Two probabilities of the joint event can then be defined as:

ξt(i, j) =
αt(i) aij bj(ot+1)βt+1(j)

P (O | λ)
, (13)

γt(i) =
αt(i)βt(i)
P (O | λ)

, (14)

where (13) defines the probability of the joint event: a path
passes through state i at time t and through state j at time
t + 1, given the available sequence of observations O and the
parameters of the model λ. The (14) defines the probability
of being in state i at time t, given the observation sequence
O, and the model λ.

The re-estimation formulas for ICAMHMM, derived us-
ing the optimization of Q-function, are listed as follows:

π∗
i = γ1(i) (15)

P (C∗
jk) =

∑T
t=1 γt(j, k)

∑T
t=1

∑K
k=1 γt(j, k)

(16)

µ∗
jk =

∑T
t=1 γt(j, k) · ot∑T

t=1 γt(j, k)
(17)

a∗
ij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

. (18)

Note that when calculating the intermediate variables like α t(i),
βt(i), ξt(i, j), γt(i, j), the observation densities bj(ot) is com-
puted as

bj(ot) =
K∑

k=1

P (Cjk) · bjk(ot), (19)

where

bjk(ot) = exp(logp(sj,k,t) − log(det|M j,k|)). (20)

Equation (20) can be interpreted as the k-th component den-
sity, given the state j. Thus, the weighted summation over
k gives the overall observation density at state j. During the
practical implementation, the log is used to avoid the preci-
sion issues.

4.2. Likelihood Evaluation

Given any observation sequence O, the likelihood of produc-
ing the observation sequence is given by P (O | λ). The
calculation of the likelihood is very similar to the classical
Forward-Backward Procedure. The major difference is that
the observation densities are computed from the sources and
basis matrices. The likelihood P (O | λ) is inductively solved
as follows:

1)Initialization:
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α1(i) = πi

K∑

k=1

P (Cik) exp(logp(si,k,1)−log(det|M ik|));

(21)

2)Induction:

αt+1(j) = [
N∑

i=1

αt(i)aij ]·

K∑

k=1

P (Cjk) exp(logp(sj,k,t+1) − log(det|M jk|)); (22)

3)Termination:

P (O | λ) =
N∑

i=1

αT (i); (23)

where 1 ≤ i ≤ N , and 1 ≤ t ≤ T − 1.

4.3. State Sequence Estimation

The algorithm to compute the hidden state sequence is based
on the Viterbi algorithm [5]. When calculating the observa-
tion densities, Equations (19) and (20) are used.

5. EXPERIMENTAL RESULTS

The proposed ICAMHMM framework is implemented in Mat-
lab to verify its effectiveness. We manually create a two-state
sequence as the ground truth data. Two classes of distribu-
tions, as shown in Figure 1, are mapped to the two states. We
randomly generate the samples based on the state sequence.
Each sample is a two-dimensional point in the observation
space. The total sample size is 1300. The results are shown
in Figure 2. As it can be seen that the proposed algorithm
is effective to capture the temporal dynamics for the mix-
ture of non-Gaussian observation densities. During a ten-trial
experiment, the number of correctly estimated states using
ICAMHMM is 99.15%. Among the 1300 samples, there are
only 11 samples whose states are incorrectly estimated. The
overall performance is comparable to the classical continuous
HMM model using mixture of Gaussians.

6. CONCLUSIONS

In this paper, we propose a novel framework that combines
both ICA mixture and HMM to model strong non-Gaussian
observation densities. In particular, the ICA mixture model
is used to capture the spatial characteristics, and the HMM
is used to capture the temporal characteristics of the signal.
Under this new framework, we develop the updating rules for
the three fundamental HMM problems. Experimental results
show that the proposed framework can effectively model the
data. However, we also notice that the ICAMHMM may not
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Figure 1: Sample distributions in observation space.
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Figure 2: HMM state sequence learnt by ICAMHMM.

converge to a desired result occasionally because of the intro-
duction of ICA mixture model. As part of our future work, we
will be focusing on the re-estimation algorithms to improve
the stability of model learning.
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