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ABSTRACT 
This paper presents a compact and discriminative hidden Markov 

model (HMM) approach for general pattern classification. To 

achieve model compactness and discriminability, we 

simultaneously perform feature dimension reduction and HMM 

parameter estimation via maximizing the confidence of accepting 

the hypothesis that observations are from target HMM states 

rather than competing HMM states. A new discriminative training 

criterion is derived using hypothesis test theory. Particularly, we 

develop the maximum confidence hidden Markov modeling

(MCHMM) framework for face recognition. Using this 

framework, we incorporate a transformation matrix to extract 

discriminative facial features. The continuous-density HMM 

parameters are estimated using the extracted features. Importantly, 

we adopt a consistent criterion to build whole framework 

including feature extraction and model estimation. From the 

experiments on ORL facial databases, we find that the proposed 

method obtains robust image segmentation performance in 

presence of different variations of facial expressions, orientations, 

etc. In comparison of previous HMM approaches, the proposed 

MCHMM achieves better recognition accuracies and image 

segmentation.

1. INTRODUCTION 
Face recognition has been known as the key technology for 

many information security systems. Although template based 

methods such as principal component analysis (PCA) and linear 

discriminant analysis (LDA) are popular for face recognition, the 

recognition accuracies using these methods highly depend on the 

training templates [6]. If the variations of face images are not 

contained in template set, system performance is deteriorated 

seriously. In contrast to template based approaches, hidden 

Markov model (HMM) first developed for speech recognition [11] 

has been powerful for many pattern recognition applications, e.g. 

optical character recognition [9], face recognition, etc. In general, 

the continuous-density HMM parameters are constructed by a set 

of state transition probabilities, Gaussian mean vectors and 

covariance matrices. The state structure is effective to represent 

time series signals such as speech data where time alignment is a 

series and critical problem. Due to the great success in speech 

recognition, HMM has been extensively employed in modeling 

data variations for face recognition [13], e.g. the variations from 

face expressions, orientations, with/without eyeglasses and beard, 

etc. Similar to speech signal, facial image can be blocked in a 

sequence of sub-images in a top-down left-right manner. This 

sequence can be characterized by one dimensional (1-D) state 

sequence in 1-D HMM. Using two-dimensional (2-D) HMM, the 

vertical and horizontal information of a face image is represented 

by a 2-D nm  state matrix. Namely, each face image is divided 

into m  horizontal states and n  vertical states. Each state is 

related to its neighboring state. Since 2-D HMM uses two-

dimensional structure information of face image, the computation 

complexity grows rapidly when the number of states increases in 

a full connected 2-D HMM. To deal with the issue of extensive 

computation, several approximated 2-D HMM architectures 

including pseudo 2D-HMM [4], embedded HMM [7] and low 

complexity HMM [8] have been proposed. 

Conventionally, PCA, LDA, discrete cosine transform or 

wavelet transform [1] performs linear transformation to extract 

low dimensional features from high dimensional pixel data. High 

frequency signal bearing noise information was discarded. 

Previously, there was no evidence of showing discriminability of 

using these features. The extracted features directly served as 

observation data for maximum likelihood (ML) estimation of 

HMM parameters. ML HMM parameters were assured to 

optimally match the observed features in terms of likelihood 

measure. However, model discriminability was not guaranteed. In 

this paper, we concern on two issues in establishing HMMs for 

high dimensional observation data. The first issue involves the 

hybrid process of feature extraction and model estimation. We 

aim to merge two operations under the common objective 

function. Secondly, we exploit a new discriminative training

criterion derived from hypothesis test theory.  The maximum 

confidence objective function is carried out for discriminative 

HMM estimation, which is different from other discriminative 

training algorithms e.g. minimum verification error (MVE) [12]0 

training. We simultaneously estimate transformation matrix and 

HMM parameters through maximizing confidence criterion. 

Performing discriminative transformation is crucial to extract 

salient features for segmenting observation data into 

corresponding HMM states. Having desirable data alignment, we 

are able to estimate robust models covering different variations 

and improve face recognition accuracies in the experiments. 

2. RELATED WORKS 

Before describing new HMM framework, we first survey two 

related studies; hypothesis test theory and MVE discriminative 

training. Because maximum confidence criterion is originated 

from hypothesis test theory, we introduce background knowledge 

as follows. 

2.1. Hypothesis Test 
Hypothesis test principle is used to decide whether we should 

accept a claimed hypothesis or not. There are three steps in 

hypothesis test problem; 1. Define null hypothesis 0H  and 

alternative hypothesis 1H  and choose a significance level. 2. 

Calculate likelihood functions )( 0HXP  and )( 1HXP  and 

determine critical region. 3. Make a decision of acceptance or 

rejection of 0H . According to Neyman-Pearson Lemma, when 

likelihood functions )|( 0HXP  and )|( 1HXP  are given, the 

optimal solution is obtained by a likelihood ratio test  
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where  is a decision threshold determined by a significance 

level for distribution of LR . Generally, likelihood ratio LR  has 

the physical meaning of measuring confidence of choosing null 

hypothesis. Null hypothesis is accepted if likelihood ratio is 

greater than . The higher the likelihood ratio is measured, the 

stronger the evidence showing observations X  belong to null 

hypothesis 0H . Here, we concern on the hypothesis whether 

observation data },,,{ 21 TX xxx  are from target model or 

not. We are motivated to construct a new discriminative training 

criterion for estimating feature transformation matrix and HMM 

parameters. The estimated parameters are desirable because the 

maximum confidence towards choosing target models rather than 

competing models is achieved. For comparison, we also introduce 

a related discriminative training algorithm called minimum 

verification error [12]0 We will illustrate the relation between 

MVE and MCM algorithms later. 

2.2. Discriminative Training 
Minimum classification error (MCE) [2] is a popular 

discriminative training algorithm in which the classification error 

is minimized to estimate discriminative models. When switching 

classification (multi-class) problem to verification (binary class) 

problem, we deal with two classes/outcomes which are 

acceptance and rejection. In [12]0, MCE was extended to 

minimum verification error (MVE) algorithm that total detection 

errors were minimized to achieve discriminative verification. 

MVE aims to estimate discriminative models for verifying test 

data corresponds to a target model j  against non-target model 

j . This verification problem is solvable using hypothesis test 

principle. For the purpose of utterance verification, target and 

competing models represent keyword and non-keyword (cohort) 

events, respectively. In MVE procedure of training j  and j , a 

discriminant function is defined using log likelihood function  
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and the anti-discriminant function is formed by averaging the 

other discriminant functions 
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where )( jXP  is the likelihood function of X  given model 
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Mis-verification measure is expressed by 

),(),g(),( jjj XGXXd .                    (5) 

Then, the detection error based loss function is calculated by 

mapping ),( jXd  into a range of zero to one through a sigmoid 

function
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Consequently, we minimize the expected detection error to find 

discriminative model 
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where )(1  is the indicator function. 

3. MAXIMUM CONFIDENCE 

HIDDEN MARKOV MODEL 
Hereafter, we are introducing a new discriminative training 

criterion for transforming features and estimating compact hidden 

Markov models.  

3.1. Maximum Confidence Criterion 
In [12]0, hypothesis test theory was applied to build 

verification system. Discriminative training algorithm was 

derived through minimizing expected verification error. In this 

study, we directly apply hypothesis test principle for deriving 

discriminative training criterion. Importantly, we simultaneously 

estimate feature transformation matrix and HMM parameters for 

facial image recognition. When building new objective function, 

we setup null and alternative hypotheses as 

0H : Observation X  is from target HMM state j 

1H : Observation X  is not from target HMM state j 

We aim to estimate model parameters by optimizing the 

likelihood ratio of target state to competing state, or equivalently, 

maximizing the confidence of deciding X  is from target state 

j  rather than competing state j . Practically, our goal is to 

enlarge the separability between HMM states. The estimated 

parameters are able to improve the correctness of data alignment 

in HMM state level. Namely, this problem turns out to verify the 

result of data alignment to the corresponding HMM states. For 

face recognition, we are aligning facial image into different 

segments representing forehead, eyes, nose, mouth and chin. It is 

desirable to use correct state alignment to estimate good model 

parameters. 

Considering high-dimensional facial image data, we perform 

a class-dependent linear transformation prior to HMM estimation. 

This transformation is used for dimension reduction and similar 

to many face recognition approaches using PCA and LDA. Thus, 

parameter set  include transformation matrices }{W , HMM 

mixture weights }{ jk , mean vectors  }{ jk  and covariance 

matrices }{ jk . For simplicity, we ignore HMM state initial 

probabilities and transition probabilities. We neglect class label in 

all expressions. MCHMM is estimated by maximizing the 

following log likelihood ratio 

)(log)(logmaxarg)(LLRmaxargˆ XPXPX , (8) 

where  is anti- or competing model set. Similar to (3), 

)(log XP  can be calculated accordingly. 

3.2. Parameter Estimation 
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When estimating MCHMM, we have hidden variable, i.e. 

HMM state label j . We should apply expectation-maximization 

(EM) algorithm to tackle missing data problem for maximum 

confidence estimation. In E-step, we calculate an expectation 

function of log likelihood ratio over state variable jst
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In M-step, we maximize this auxiliary function with respect to 

new estimate . Current estimate  is used to determine 

posterior probability )(),( jXjsP tt . Before performing 

maximization step, we expand the expectation function )(Q

using K  mixtures of Gaussian distributions as  
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which can be separated into two sub-functions )}{}({ jkjkQ

and )},,{},,({ WWQ jkjkjkjkg . Finally, we find new 

estimates },,,{ Wjkjkjk  by taking differentials with 

respect to the corresponding parameters and setting them to zero. 

We obtain closed-form solutions to jk , jk  and jk  as follows 
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However, there is no closed-form solution to feature 

transformation matrix W . We adopt gradient decent algorithm to 

iteratively find optimal new estimate by 
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where  is the learning rate and 
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3.3. Relation between MCHMM and MVE 
In general, MVE and MCHMM are developed for 

discriminative training for verification and classification 

problems, respectively. Specially, MCHMM is exploited for 

discriminative feature transformation and HMM training. In 

MVE framework, the gradient-based iterative procedure is used 

to minimize expected verification error and estimate utterance 

verification models. Here, MCHMM is derived using EM

algorithm and come up with closed-form solutions to HMM 

parameters. Rapid parameter estimation is achievable. MCHMM 

is applied for the experiments on face recognition as described 

later. Using MCHMM, each frame window is aligned with the 

maximum confidence state so that image segmentation can be 

performed accordingly. Also, when we investigate the relation 

between training criteria using maximum confidence and MVE, it 

is interesting to see that log likelihood ratio criterion in (8) is 

similar to the accumulated mis-verification measure in MVE 

criterion using log likelihood function as discriminant function. 

Correspondingly, maximizing confidence measure is comparable 

to minimizing verification error. Again, this is why the proposed 

MCHMM is able to achieve discriminative training performance. 

4. EXPERIMENTS 

4.1. Experimental Setup and Implementation Issues 
In the experiments, we carried out baseline HMM and 

MCHMM for face recognition evaluation using two public-

domain facial databases; ORL and FERET [10]. Baseline HMM 

system was also referred as embedded HMM [3] where each face 

image was characterized by five vertical super-states. 

Considering three states for forehead, seven states for eyes, seven 

states for nose, seven states for mouth and three states for chin, 

there were totally 27 HMM states used to model a human class. A 

6x6 sample window with four overlapped pixels was specified to 

extract feature vectors from left top to right down for a face 

image. For simplicity, each state was modeled by a single 

Gaussian distribution. Using ORL database, we randomly 

selected five images as training images and the other five images 

as test images as referred to [5]. There were forty classes in ORL 

database. To verify the robustness of using HMM approaches, 

FERET database containing sufficient facial variations was 

adopted for evaluation. We selected 153 human classes with at 

most eight images provided for each class. All images were 

resized to 92x104 to match image size in ORL database. For each 

class, three frontal pose images were selected for training and the 

remaining images of each class containing different facial 

variations were included in test data set. Totally, there were 569 

test images. To conduct fair comparison, we performed five-fold 

cross validation for all experiments. When realizing HMM 

approaches to face recognition, we developed Viterbi search 

algorithm to perform state alignment for a test image using model 

parameters from different classes. Using MCHMM, we calculated 

confidence scores of each frame matching with HMM states. 

4.2. Experimental Results 
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As shown in Table 1, we find that MCHMM (97%) 

significantly outperforms baseline HMM (95.5%) when using 

ORL face database. To investigate the effect of feature dimension 

on computation time and recognition accuracy, we report 

recognition time per image and averaged recognition rate using 

FERET database at Table 2 and Figure 1, respectively. Here, 

baseline HMM is performed. Feature dimension is determined 

through the estimated transformation matrix W. The cases of 12, 

14, 16, 18, 20 and 36-dimensional features are implemented. 36-

dim case is marked as baseline curve because the sample window 

size is 6x6. We can see that computation time is increased by 

merging more features in face recognition. However, when 

examining the recognition accuracies, it is attractive to see that 

the best recognition rates are achieved using 16-dimensional 

features. In most cases, recognition rates are decreased when 

considering more classes. In general, the classification robustness 

is guaranteed using HMM approaches. Finally, we compare the 

HMM state alignments using baseline HMM and MCHMM in 

Figure 2. It is obvious that MCHMM discriminative models 

obtain better segmentation compared to baseline HMM models. 

Table 1 Recognition rate using different models on ORL database. 

 Baseline HMM MCHMM 

Recognition Rate (%) 95.5 97 

Table 2 Recognition time using different feature dimensions. 

(Platform: CPU: P4 2.4GHz, RAM: 1 GB) 

Dimension 10 12 14 16 18 36 

Time (sec. 0.25 0.30 0.38 0.43 0.55 1.67
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Figure 1: Recognition accuracy using different feature 

dimensions and class numbers on FERET database. 

Figure 2: HMM state alignment for FERET face images using 

baseline HMM (Top Row) and MCHMM (Bottom Row). 

5. CONCLUSION
  We have presented a new maximum confidence HMM 

framework for face recognition. The novelty of this paper aimed 

to develop a discriminative and rapid estimation of feature 

transformation matrix and HMM parameters. This new objective 

function was derived from hypothesis test principle. Through 

verifying HMM states aligned for observation data, we obtained 

better state alignment for estimating desirable HMM parameters. 

Different PCA or LDA facial feature extraction, we performed 

discriminative transformation. EM algorithm was fulfilled to find 

all model parameters. From experimental results, we confirmed 

the goodness and robustness of using proposed MCHMM for face 

recognition.
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