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ABSTRACT

In this work, we study the estimation of mixtures of symmet-
ric α-stable distributions using Bayesian inference. We utilise
numerical Bayesian sampling techniques such as Markov chain
Monte Carlo (MCMC). Our estimation technique is capable
of estimating also the number of α-stable components in the
mixture in addition to the component parameters and mixing
coefficients which is accomplished by using the Reversible
Jump MCMC (RJMCMC) algorithm.

1. INTRODUCTION

For the sake of simplicity, in signal processing it has gener-
ally been convenient to work with linear and Gaussian mod-
els. The Gaussianity approach had been satisfying for many
applications, however, there are also applications where the
Gaussian assumption cannot be satisfied. Many real-life sig-
nals exhibit a more impulsive nature indicating heavier tails
than normally distributed signals. For this class of signals the
α-stable distributions have been used widely in a successful
manner especially in the last decade [1].

Various work in the literature have considered the prob-
lem of the estimation of the parameters of the α-stable distri-
bution (e.g. [2] [3]) and linear and nonlinear models based on
α-stable marginals have found wide application areas. How-
ever, in many real-world applications, the signal at hand might
exhibit multi-modal characteristics which cannot be modelled
by a unimodal α-stable pdf. In the past, Gaussian mixture
models has shown great success in modelling multi-modal
data which however require a large number of components
in the case of heavy tailed data. Therefore, we believe that
there is a need to consider mixtures of α-stable distributions.

In this work, we propose a method for the estimation of
mixtures of stable distributions using a fully Bayesian method-
ology. Previous work on this task was done by Casarin in [4]

∗This work was partially supported by the project TEC 2004-06096-C03-
02/TCM of the MCyT of Spain. The first author performed the work while
at ISTI-CNR of Pisa.

following the Bayesian inference method for stable distribu-
tions of Buckle [5] but, contrary to [4], in our approach the
number of components in the mixture are unknown and they
are accurately estimated making use of the Reversible Jump
Markov chain Monte Carlo (RJMCMC) algorithm.

Also, rather than following Buckle’s scheme for inference
on the distribution parameters, our suggested method uses a
scale mixture of normals (SMiN) representation of the sym-
metric α-stable distribution [6]. This allows us to write the
α-stable distributions in Gaussian form, conditional to a ran-
dom variable λi, and hence suggests a hierarchical sampling
scheme [7, 8]. Once mixture of stable distributions is writ-
ten in conditionally Gaussian form, it is easy to apply MCMC
methods and reversible jump MCMC [9] to perform inference
in parameters in a similar way that it is done in [10] for mix-
tures of Gaussians.

The paper is organised as follows. In section 2 we intro-
duce briefly the stable distributions and present the product
property. In section 3 we introduce the model for mixture of
symmetric α-stable distributions and Gibbs and hybrid rejec-
tion sampling for this mixture model is presented. Further-
more, in this section we focus on reversible jump move to
estimate the number of symmetric α-stable components. In
section 4 we present simulations results and lastly in section
5 we draw conclusions and suggest future work.

2. STABLE DISTRIBUTIONS

2.1. Univariate stable distributions

The formula for the characteristic function of an α-stable dis-
tribution fα,β(γ, µ) is given by:

ϕ(ω) =
{

exp(−|γω|α[1 − isign(ω)βtan(πα
2 )] + iµω), (α �= 1)

exp(−|γω|[1 + isign(ω)β log (|ω|)] + iµω), (α = 1)
(1)

where the parameters of the stable distribution are: α ∈ (0, 2]
is the characteristic exponent which sets the level of impul-
siveness. β ∈ [−1, 1] is a skewness parameter. (β = 0, for
symmetric distributions and β = 1 for the positive stable fam-
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ily). γ > 0 is a scale parameter also called dispersion and µ
is a location parameter.

2.2. Product property

The following property holds for α-stable distributions: [6]

Let X and Y > 0 be independent random variables with

X ∼ fα1,0(σ, 0) and Y ∼ fα2,1(
(
cos πα2

2

) 1
α2 , 0). Then

XY 1/α1 is stable with parameters X ∼ fα1·α2,0(σ, 0).

We are interested in the case in which α1 = 2 (Gaussian case)
and α2 < 1. For these parameter values, a scale mixtures of
normals (SMiN) could be used for the symmetric stable law
as follows (see [8] for more details). If vi is a i.i.d. sample
from a symmetric α-stable distribution with location parame-
ter (µ = 0) and scale parameter γ:

vi

γ
∼ fα,0(1, 0) (2)

The product property can be used to obtain the following
equivalent representation:

vi ∼ N (0, λiγ
2) (3)

λi ∼ fα
2 ,1(2

(
cos

πα

4

) 2
α

, 0) (4)

Where N (0, λiγ
2) is the normal distribution with zero mean

and variance λiγ
2. This equivalent model is very useful for

Bayesian inference using Markov chain Monte Carlo and re-
versible jump Markov chain Monte Carlo since, conditionally
on λi and γ, the α-stable variable vi is Gaussian.

3. BAYESIAN INFERENCE OF PARAMETERS FOR
MIXTURES OF SYMMETRIC α-STABLE

DISTRIBUTIONS

We write the symmetric-stable mixture model for observa-
tions yi as:

yi ∼
k∑

j=1

wjfα,0(µj , γj) (5)

independently for i = 1, 2, ...N , where N is the length of vec-
tor observations. k is the number of components, and w j , µj

and γj are the weights, location parameter and dispersion for
every j-component, respectively. In this kind of mixture mod-
els is convenient to use, for every observation i, a latent allo-
cation variable zi ∈ [1, 2, ..., k]. These zi are independently
drawn from p(zi = j) = wj , (j = 1, 2, ...k) and condition-
ally on zi mixture model is rewritten:

yi ∼ fα,0(µzi , γzi) (6)

For every observation, yi, the likelihood for this model is:

p(yi|µj , γ
2
j , λi, zi = j) =

1√
2πλiγj

exp

{
− (yi − µj)2

2λiγ2
j

}
(7)

This formulation suggests a straight forward hierarchical scheme
for Bayesian inference on the parameters of the mixture model.

In the next subsections, we present the details of the MCMC
sampling scheme we adopted for this task. In particular, we
use Gibbs sampling for updating the weigths, the location pa-
rameters, the dispersion, and the allocation paremeters and
hybrid rejection sampling for updating λ i.

3.1. Updating the weights (w)

As usually done in the literature on mixing problems, the prior
on w is taken as symmetric Dirichlet D,

w ∼ D(ζ, ..., ζ) (8)

so the full conditional distribution for w is:

w | ... ∼ D(ζ + n1, ..., ζ + nk) (9)

where nj =
∑

i δ(zi − j)

3.2. Updating the location parameter (µj)

For analytical convenience we choose a Gaussian conjugate
prior with mean ξ and variance κ−1 for µj

µj ∼ N (ξ, κ−1) (10)

so the full conditional is also Gaussian with the following
mean and variance

µj | ... ∼ N

⎛
⎜⎜⎜⎝

1
γ2

N∑
i=1:zi=j

yi

λi
+ κξ

1
γ2

N∑
i=1:zi=j

1
λi

+κ

,
1

1
γ2

N∑
i=1:zi=j

1
λi

+κ

⎞
⎟⎟⎟⎠
(11)

3.3. Updating the dispersion (γj)

Again, we choose a conjugate prior for the scale parameter
which is (inverse gamma)

γ2
j ∼ IG(α0, β0). (12)

Then the full conditional is obtained simply as:

γ2
j | ... ∼ IG(α0 +

N

2
,
1
2

N∑
i=1:zi=j

(yi − µj)2

λi
+ β0) (13)
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3.4. Updating the allocation variables (zi)

By the way we have constructed our hierarchical scheme, the
prior distribution for allocation variables is

p(zi = j) = wj . (14)

It is straightforward to obtain the following full conditional
distribution for zi:

p(zi = j | ...) ∝ wj√
λiγj

exp

{
− (yi − µj)2

2λiγ2
j

}
. (15)

3.5. Hybrid rejection sampling for the hyper-parameter
λi

The full conditional for the auxiliary variable λ i is:

p(λi | µj , γ
2
j , λi, zi = j) ∝ 1√

λiγj
exp

{
− (yi−µj)

2

2λiγ2
j

}
×fα

2 ,1(λi | 2
(
cos πα

4

) 2
α , 0)(16)

Since it is difficult to do Gibbs sampling for this case, we opt
for an easier sampling scheme, namely rejection sampling to
sample for the full conditional for λi. In order to avoid very
low acceptance ratios, from which classical rejection sam-
pling suffers, we use the hybrid rejection sampling proposed
by Godsill and Kuruoglu (we refer to [4] for further details).

3.6. Reversible jump move for the number of components
(k)

Sampling for the number of components in the mixture k, in-
volves a change of dimensionality. A reversible jump move is
used to model this. We propose to use birth-death moves as
in the work of Richardson and Green for mixtures of Gaus-
sians [10]. For a birth move, it is convenient to propose a new
component, denoted as j∗, drawing samples for Beta (Be),
Normal (N ) and Inverse Gamma (IG) distributions:

wj∗ ∼ Be(1, k) (17)

µj∗ ∼ N (ξ, κ−1) (18)

γ2
j∗ ∼ IG(α0, β0) (19)

For birth and death move, the acceptance probabilities are
min(1, A) and min(1, A−1) where the expression for A is
obtained using the expression for reversible jump moves:

A = p(k+1)
p(k)

1
B(kζ,k)w

ζ−1
j∗ (1 − wj∗)N+kζ−k(k + 1)

× dk+1
(k0+1)bk

1
g1,k(wj∗ ) (1 − wj∗)k−1 (20)

Where B(kζ, k) is the Beta function and g1,k is the Beta(1, k)
density function. dk+1 and bk are the probabilities for choos-
ing, at every iteration, between death and birth move respec-
tively. k0 is the number of components which have a number
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Fig. 1. Number of components k estimated for iteration.

of allocated samples less than a specified threshold and k the
number of components before the birth.

Due to the random nature of λi which is drawn from a
very heavy tailed distribution, we might end up with spurious
components, that is, components to which only small percent-
age of the samples are assigned and which possibly have wild
variances. To prevent this problem we have employed a a very
mild thresholding on the variable z, that is nj < ε .

4. RESULTS

We test the proposed method on the following mixture model:

yi ∼ 0.5f1.6,0(1.2, 6)+0.3f1.6,0(0.5, 0)+0.2f1.6,0(0.1,−2)
(21)

The settings for hyperparameters of prior distributions and
parameters of the simulation are: α0 = 1, β0 = 1, ξ = 0,
κ = 1/32, ζ = 1, N = 1000, bk = dk = 0.5, ε = 0.05N
and the number of iterations is set to 500. For p(k), a Poisson
prior with parameter equal to 1 is chosen and we initialize the
number of components with k = 15.

Figure 1 shows the number of components estimated in
each iteration. It is readily seen that the convergence of model
size is very fast, after only 50 iterations, the true number of
components (k = 3) is obtained. Thus, Birth/death move for
(nearly) empty-components is enough to obtain accurately es-
timation of the number of components for this model. The
MCMC realization when k = 3, (that is after when the con-
vergence has been reached for the number of components)
is depicted in figure 2. We see that for the scale, location and
mixing parameters the convergence is very fast. The estimates
of the location parameter, the dispersion and the weights for
this experiment are shown in Table 1. The location parame-
ter, the dispersion and the weights of the components are es-
timated very accurately.

In Figure 3, the histogram of the observations y i and the
probability density function estimated with black line are shown.
The density with the estimated model parameters fits the data
very accurately.
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Fig. 2. MCMC realizations for µj , γj , wj when k = 3. Dot-
ted line: true values. Solid line: estimates

Table 1. Simulation results
parameters true value estimate standard deviation

µ1 -2 -2.01 0.02
γ1 0.1 0.158 0.009
w1 0.2 0.19 0.01
µ2 0 0.00 0.05
γ2 0.5 0.49 0.03
w2 0.3 0.31 0.02
µ3 6 6.01 0.08
γ3 1.2 1.17 0.05
w3 0.5 0.50 0.02

5. CONCLUSION AND FUTURE WORK

A novel method for Bayesian inference for mixtures of sym-
metric stable distributions with an unknown number of com-
ponents is presented. This method takes advantage of the
scale mixing of normal representations for symmetric stable
distributions allowing to work with heavy tailed distribution
in a Gaussian framework so MCMC and RJMCMC can be
applied easily under this approach. Simulation results indi-
cate very good performance. In this work, as in [8], we did
not aim to estimate the shape parameter, α of the stable dis-
tribution. This will be the focus of our future work. In sequel,
this model will also be extended to non-symmetric α-stable
distributions.
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