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ABSTRACT

It is common that a singer develops a vibrato to personalize his/her
singing style. In this paper, we explore the acoustic features that
reflect vibrato information, to identify singers of popular music.
We start with an enhanced vocal detection method that allows us
to select vocal segments with high confidence. From the selected
vocal segments, the cepstral coefficients which reflect the vibrato
characteristics are computed. These coefficients are derived using
cascaded bandpass filters spread according to the octave frequency
scale. We employ the high level musical knowledge of song
structure in singer modeling. Singer identification is validated on a
database containing 84 popular songs in commercially available
CD records from 12 singers. We achieve an average error rate of
16.2% in segment level identification.

1. INTRODUCTION

Singer identification (SingerID) is an important task in the area of
music information retrieval. A singer identification system has
three fundamental components: 1) A vocal detector that separates
singing voice (vocal) from instrumental sound (non-vocal) in a
song. 2) A feature extraction front-end that obtains singer feature
parameters from the vocal segments. 3) A statistical classifier that
identifies the singer given an unknown vocal segment.

The topic of vocal detection has recently been given much
attention. One important effort recently made use of music
semantics in addition to acoustic characteristics [1, 2]. In [1], song
structure information and song specific vocal characteristics are
integrated in vocal/non-vocal modelling. In [2], octave frequency
scale is used to characterize the harmonic structure of vocal and
non-vocal segments.

A large number of features have been explored for representing
audio signals for SingerID. These include Mel Frequency Cepstral
Coeftficients (MFCC) [3], Linear Prediction Coefficients (LPC)
[4], robust estimates of spectral envelopes [5] and octave
frequency scale based cepstral coefficients [6]. The study in [7]
uses Composite Transfer Function (CTF) which is derived from
the instantaneous amplitude and frequency of the partials
associated to vocal vibrato to identify singer. Mellody et al. [8]
stated that temporal patterns in the vocal passage such as vibrato
and note transitions are likely cues to singer identity and vocal
quality. Sundberg [9] stated that vibrato develops more or less
itself without thinking about it and without trying actively to
acquire it. Vibrato rate is generally considered to be a constant
within a singer. However, some singers are able to deliberately
change their vibrato rate. Eric [10] found that individual singer’s
interpretation of a piece of music may affect the vibrato rate. In
general, all these studies suggest that vibrato is a function of the
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style of singing of a particular singer, which can be controlled
consciously or unconsciously. Inspired by these studies, in this
paper, we investigate the effect of directly integrating vibrato
information into acoustic features on SingerID performance. In [7],
Wakefield derived Composite Transfer Function (CTF) based on
vibrato information. We propose using several types of subband
filters to integrate vibrato into acoustic features. The difference
between the two studies lies in the ways we explore the vibrato
characteristics.

The method in [6] uses octave frequency scale to derive the
cepstral coefficients to identify singers. Apart from harmonic
analysis, we find that this octaves frequency scale can be used to
investigate the singer’s vibrato characteristics as well.

Many common pattern classifiers such as HMM, neural
networks (NN) and support vector machines (SVM) have been
proposed for SingerID [4,3]. In those studies, a statistical model
for each of the singers was created only using acoustic cues. Note
that a popular song is composed according to a common structure
that comprises of intro, verse, chorus, bridge and outro sections
[2]. Each section of a song has its signal characteristics, which is
uniquely interpreted by a singing voice and its music
accompaniment [11]. We propose building multiple HMMs, also
called Multi-Model HMM or MM-HMM, for a singer based on the
structure of the songs, with each describing the singer’s vibrato
characteristics present in one section of the songs.

Our approach consists of three steps. First, the test song is
segmented and classified into vocal and non-vocal segments. Then,
we compute the confidence scores of the classification decision to
confirm the vocal detection with a hypothesis test. Finally, we
extract singer features from the vocal frames and evaluate them
with the MM-HMM singer model.

The rest of the paper is organized as follows. In section II, we
propose a method for vocal/non-vocal detection. In section III, we
discuss in details the procedures for singer feature extraction from
an audio signal. In section IV, we propose singer modelling based
on sections of song structure. In section V, we present the
experiment set-up and results. Finally, we conclude our study in
section VL.

2. VOCAL DETECTION AND VERIFICATION

The vocal detector detects the presence of vocals in the musical
signal. We use subband based Log Frequency Power Coefficients
(LFPC) [12] to form our feature vectors. We employ Multi-Model
HMM (MM-HMM) classifier method and bootstrapping process
[1] for vocal/non-vocal modelling and classification,

Vocal detector has more false alarm than false rejection. To
exclude the misclassified vocal segments from the SingerID
experiments, we perform hypothesis test [13] to measure the
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confidence of the classification decision made by vocal detector.
Then, the given test segment is rejected if the confidence measure
is below a predetermined threshold. Otherwise, it is accepted to
include in the SingerID experiments.

3. ACOUSTIC FEATURES

We propose to use octave frequency scale based subband filters to
characterise vibrato of a singer. The output amplitudes of these
filters contain the information of the vibrato. We then transform
these subband energies into cepstral coefficients for statistical
modelling.

3.1. Vibrato

Vibrato is a periodic, rather sinusoidal, modulation of pitch and
amplitude of a musical tone [14]. The vibrato adds a special
quality to the tone [9]. Figures 1(a), (b) and (c) show examples of
vibrato excursions occurring at the tone D6 for three different
singers. In Figures 1 (b) and (c), the vibrato excursions to the up
and down of a note are not balanced compared to Figure 1(a).
According to [15], such irregular vibrato excursions are very
common in most of the tones. In addition, the figures show that
vibrato extent differs from singer to singer. Some singers display a
wider pitch fluctuation and a slower rate of vibrato which is
referred to as ‘wobble’ [16]. Singers producing a vibrato with a
narrower pitch modulation at a faster rate may be considered to
have a ‘bleat’ [17]. In summary, three different characteristics of
vibrato waveform should be integrated into the acoustic feature
formulation. These are 1) regularity or irregularity in vibrato
excursion, 2) two different vibrato types of ‘wobble’ and ‘bleat’,
and 3) vibrato rate.

As a result of the modulation of pitch, the frequencies of all the
overtones vary regularly and in sync with the pitch frequency
modulation [9]. Therefore, we implement the subband filters with
the center frequencies located at each of the musical notes to
characterize the vibrato. The list of the frequencies of the musical
notes can be found in [18]. Due to the fact that singing voice
contains high frequency harmonics [4], our subband filters span up
to 7 octaves (16kHz). According to [19] and [9], minimum range
of the vibrato extent is + (.5 semitone and maximum range of the
vibrato is 1 semitone. Our subband filters are implemented with
a bandwidth of & 1.5 semitone from each note since vibrato extent

can increase more than * 1 semitone when a singer raises his/her
vocal loudness [9]. We employ three different types of subband
filters: triangular, parabolic and cascaded subband filters, to
capture vibrato information from acoustic signal.
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Figure 1. Vibrato waveforms of 3 singers at note D6, 1174.6Hz .
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Figure 2. A bank of triangular bandpass filters

3.2. Triangular subband filters

The triangular bandpass filters and subband outputs are shown in
Figures 2 and 3 respectively. These filters are symmetric and
center at the musical notes. The more the vibrato fluctuation
occurs, the less the filter outputs. The output amplitude is
maximum when there is no fluctuation. These filters are able to
capture whether the vibrato fluctuation is wide (wobble) or narrow
(bleat). However, these filters cannot judge whether the vibrato
fluctuates left or right because of their symmetrical shape. In order
to capture the regularity or irregularity in vibrato excursion, the
filter output has to reflect the information of left or right vibrato
fluctuation. To account for the left/right direction of vibrato
fluctuations, we propose parabolic subband filters in the following
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Figure 3. Vibrato fluctuations and triangular bandpass filtering
observed at the note G#5, 830.6Hz. (a) vibrato fluctuates left (b)
no fluctuation (c) vibrato fluctuates right. The upper panel shows
spectrum partial. The middle panel presents the frequency
response of the tri triangular bandpass filters. The lower panel
demonstrates the output of the triangular bandpass filters.

3.3. Parabolic subband filters

0.06 16kHz
' Frequency(kHz)
Figure 4. A bank of parabolic bandpass filters
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Figure 5. Vibrato fluctuations and parabolic bandpass filtering
observed at the note G#5, 830.6Hz. (a) vibrato fluctuates left (b)
no fluctuation (c) vibrato fluctuates right. The upper panel shows
spectrum partial. The middle panel presents the frequency
response of the parabolic bandpass filters. The lower panel
demonstrates the output of the parabolic bandpass filters. The
parabolic bandpass filters reflect the direction of vibrato
fluctuations in the lower panel by the contrast of output amplitude
level.

A bank of parabolic subband filters and subband outputs are shown
in Figures 4 and 5 respectively. Asymmetric shape of the parabolic
subband filters allows us to detect the direction of the vibrato
fluctuation and hence informs us of the regularity or irregularity in
vibrato excursion. As in triangular subband filters, these filters also
capture ‘wobble’ or ‘bleat’ vibrato types.

The two filters: triangular and parabolic subband filters compare
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the amplitude variations at the filter output to capture the vibrato
by assuming amplitudes of partials are constant. However, in vocal
vibrato, there is frequency as well as amplitude variation of the
partials [7]. Thus, the amplitude variations observed at the output
of these filters will reflect variations associated to both of the
frequency and amplitude of the partials. To account only for the
frequency variations, we proposed the cascaded subband filters
which will be discussed in the following section.

3.4. Cascaded subband filters
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Figure 6. A bank of cascaded subband filters

e R | :
0.6 0.8 1 06 o8 1 0.6 LR ) 1
i Wibrato Externt Wibreto Bxtent e
(¥ rcoroT LI |
06 [ 1 06 03 1 06 [X] 1 Local
\\ g " Maxima
U:E oa 1 I]..E oa 1 D..E 0.8 1

Frequency(kHz)
(=) b} 1]

Figure 7. Vibrato fluctuations and cascaded bandpass filtering
observed at the note G#5, 830.6Hz. (a) vibrato fluctuates left (b)
no fluctuation (c) vibrato fluctuates right. The upper panel shows
spectrum partial. The middle panel presents the frequency
response of the cascaded bandpass filters. The lower panel
demonstrates the instantaneous amplitude output of the cascaded
bandpass filters. With the output from the cascaded bandpass
filters, we are able to track the local maxima to derive the vibrato
extent.

The proposed cascaded subband filters and subband outputs are
shown in Figures 6 and 7 respectively. The filter has two cascaded
layers of subbands. The first layer has overlapped trapezoidal
filters. The second layer has 5 non-overlapped rectangular filters of
equal bandwidths for each trapezoidal subband. Trapezoidal filters
are tapered between = (.5semitone to 1.5 semitone. The
vibrato fluctuations are observed by tracking the local maxima in
the instantaneous amplitude output of the subbands in the second
layer as shown in the lower panel of Figure 7. Local maxima tell
the position of the partial. The distance between the center
frequency of the corresponding filter and the note informs the
vibrato extent. The tapered and overlapped trapezoidal filters in
the first layer allow vibrato fluctuations of adjacent notes observed
at the output of the subbands in the second layer to be
‘continuous’.

The advantage of cascaded subband filter over the triangular and
parabolic filters is this filter is robust to amplitude variations
associated with vocal vibrato. As a result, the cascaded subband
filters are expected to capture irregularities or regularities in
vibrato excursion and ‘wobble’ or ‘bleat’ vibrato types more
effectively than triangular or parabolic subband filters.

3.5. Cepstral coefficient computation

A music signal is divided into frames of 20ms with 13ms
overlapping. Each frame is multiplied by a Hamming window.
Then, the audio frame is passed through a bank of 96 triangular

subband filters spaced in octave scale from 65Hz to 16kHz and the
log energy of each band is calculated. Finally, a total of 9 Octave
Frequency Cepstral Coefficients using triangular subband filters
(OFCCrygy) are computed from log energies using Discrete Cosine
Transform [20] for each audio frame. To integrate the information
of vibrato rate, we augment the 9 coefficients with time derivatives
or delta parameters from the OFCCrg; of two neighboring frames.
We then replaced the triangular subband filters with parabolic and
cascaded subband filters to compute the OFCCpry and
OFCCcascapg coefficients respectively.

4. STATISTICAL SINGER MODELING

Most SingerID efforts have been devoted to different statistical
classifiers [4, 3]. However, to our knowledge, none of the studies
has taken the song structure information into account in the
modelling. According to [1], vocal and non-vocal segments display
variation of signal characteristics based on the structure of the
song. Hence, we employ Multi-Model HMM (MM-HMM)
classifier formulation method [1] for singer modelling. To capture
the intrinsic signal characteristics, we propose singer modelling,
according to the type of the section of a song, with three different

HMM models AS Z{JSV,/ISI,/’LSCBO}. Figure 8 shows the

general pop song structure and creation of HMM models based on
the structure of the song.
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Figure 8. Creation of three HMM models for each singer
5. EXPERIMENTS

Our experimental database consists of 7 popular solo songs from
each of 12 singers. Solo songs are sung by only one singer with
musical accompaniment. A total of 84 songs are included in the
database. Four songs of each singer are allocated to the training set
and the remaining 3 songs of each singer to the test set. We obtain
a training set of 48 songs and a test set of 36 songs.

Table 1: Average error rates of vocal/ non-vocal detection on
test database (N= Non-vocal, V=Vocal, Avg=Average)

Error Rate (%) N V | Avg
MM-HMM 272175173
MM-HMM + Hypothesis test 7.7 197 ] 87

5.1. Vocal/non-vocal detection

We first train the vocal and non-vocal HMM models using the
manually annotated songs, then perform classification between the
vocal and the non-vocal segments. Vocal/ non-vocal classification
decisions are made on every subsegment of 1 second. The
classification error rate is reported in the second row of Table 1.
We further examine each of the classification results by the
additional hypothesis test as discussed in Section 2. The hypothesis
test threw out 3.0% of the segments. The results are reported in the
third row of Table 1. It is observed that the hypothesis test greatly
improves the performance of vocal detection achieving a 49.7%
relative error reduction.
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5.2. Singer identification

Several experiments are conducted to evaluate the effectiveness of
vibrato based features. We use the continuous density HMM with
four states and two Gaussian mixtures per state for all HMM
models in our experiments. Using the training database, we train

the three HMM models AS = {ﬂ,YV , ﬂ: ,ﬂgc BO} for each singer

of 12 singers. The process of SingerID is carried out using the
vocal segments which are selected by the hypothesis test. Then,
the vibrato based acoustic features are computed. During
identification, a SingerID decision is made on every 5 to 10
seconds test segment. We conduct experiment to compare the
SingerID performance of five feature types, namely, OFCCcascapg
(F1), OFCCpgra (F2), OFCCry; (F3), MFCC (F4) [21], and LPCC
(F5) [20].

Table 2. Average error rates (ER) for 12 singers using vocal
segments (Case 1) and using instrumental segments (Case II)
Fl1 F2 F3 F4 F5
ER (%)-Casel 16.2 17.6 18.7 | 21.1 21.5
ER (%)-Casell 59.6 56.8 63.1 | 62.8 554

The second row of Table 2 shows that the OFCCcascapg feature,
with an average error rate of 16.2%, outperforms all other features.
It is observed that the cascaded subband filters capture well the
vibrato characteristics by 8.0% relative, or 1.4% absolute error rate
reduction over the parabolic bandpass filters. The vibrato-
motivated acoustic features (OFCCcascaps, OFCCpra, and
OFCCry)) in general give better results than the traditional features
(MFCC and LPCC).

Next, we would like to see, how the OFCCcascapg feature works
in the identification of singers in absence of singing vibrato. We
conduct the experiments using only non-vocal (instrumental)
segments. The motivation here is to see whether singing vibrato
really helps OFCCcascapg feature to perform better than others.
The third row of Table 2 reports the results. Without surprise, the
OFCCcascape feature does not work as well as others when using
only instrumental segments. Generally speaking, the vibrato-
motivated features (OFCCcascapr, OFCCpra, and OFCCryy) are
more sensitive to the presence of singing voice than the traditional
features (LPCC and MFCC).

We conduct further experiments using baseline HMM training
method. SingerID error rate of baseline HMM method is 17.6%.
The result shows proposed MM-HMM training method perform
better than baseline HMM training method.

6. CONCLUSIONS

We have presented an approach for automatic singer identification
of pop songs. Our contributions to the SingerID task can be
summarized as follows: 1) we propose a method for vocal
detection with verification; 2) we propose to use vibrato to
represent the singer’s characteristics through the exploration of
several acoustic features; 3) we propose a method for multi-model
HMM singer modeling based on the song structure. Experimental
evaluations have shown the superiority of the proposed musical
acoustic features over conventional methods. We conclude that the
vibrato-motivated singer feature is effective, and that the MM-
HMM model has successfully made use of song structure
information in SingerID.
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