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ABSTRACT

As the low-cost video transmission becomes popular, video-based
bi-modal (audio and visual) authentication has great potential in var-
ious applications that require access control over handheld terminals.
In this paper, we propose to use the averaged mouth image (AMI)
for speaker verification. The AMI is computed by averaging prop-
erly aligned mouth images over the whole video sequence. Despite
its simplicity, the AMI not only contains appearance information but
also describes stylistic articulation gestures of individual speakers.
The AMI is found to be fairly invariant against the spoken content.
The experimental results show that the AMI based features are very
effective in discriminating speaking persons. Explicit and precise
extraction of lip contours or other feature points are not required.
For bi-modal verification, the proposed video features are found to
be highly complementary to the audio features.

1. INTRODUCTION

Automatic face recognition has been an active area of research for
over 30 years [1]. The initial focus was on the use of still images.
Recently, video-based face recognition has attracted great attention
[2][3][4]. The intended applications are access control or restricted
login through handheld terminals, on which low-cost video acquisi-
tion and transmission become increasingly popular recently.

This research addresses the problem of video-based bi-modal
speaker authentication. It aims at verifying a person’s identity, given
a video that contains, at least, his/her face. The video is composed
of synchronously recorded visual and audio signals, and thus pro-
vides both face and voice biometrics of the speaker. These two as-
pects of information are considered to be highly complementary to
each other, especially in terms of their robustness against adverse
conditions. For example, the change of illumination doesn’t much
affect the effectiveness of voice biometrics. Audio-visual bi-modal
authentication has been studied extensively. In [5], frontal face im-
ages and voice were used in combination by a linear weighted clas-
sifier as well as Support Vector Machine (SVM). In [6], a coupled
hidden Markov model (HMM) was used to combine lips, face and
voice features for person identification. Video-based speaker authen-
tication also benefits from additional information that stems from
inter-frame changes. The spatial-temporal changes in a video se-
quence provide a lot more identity-related information than snap-
shot images. A tracking-for-verification system was proposed in [7].
It showed that the trajectory pattern of tracked feature points from
the same face is more coherent than those from different faces. In
[8], a 3-D point distribution model and a shape-and-pose-free texture

model were constructed from 2-D face images to represent the depth
information.

On handheld devices, the captured face image sequences are
usually of low quality and low resolution because of bandwidth lim-
itation. Many discriminative details may be lost when the image
size becomes small. From applications point of view, face recogni-
tion tends to be vulnerable to hair style variation, cosmetic makeup,
presence of glasses and facial expressions. When the mouth area is
chosen as the primary region of interest (ROI), these variations are
less problematic in practical applications.

In video-based speaker verification, non-rigid deformation of the
articulation-related area provides very useful information that differ-
entiates one person from another. Lips, as one of the most important
viewable articulators, can be shaped differently to produce different
sounds. Different styles of articulatory gesture are reflected in the
movement of lips and the so caused visual features of other partially
visible articulators like teeth and tongue. Since most salient move-
ment of a talking face belongs to the mouth area, we believe that
robust and discriminative speaker-specific visual features can be ex-
tracted from this area. Lip movement features can be captured by the
optical flow technique [9]. In [10] and [11], motion cues of lips dur-
ing speech were exploited based on extracted lip contours or motion
vectors.

In this paper, we propose to use the averaged mouth image (AMI)
for speaker verification. Our conjecture is that the precise frame-by-
frame visual movement of lips and other articulators may contain
much detail information that are redundant or even causing confu-
sion in speaker discrimination. The long-term average of the articu-
lation images tends to better reflect personalized articulation styles.
The same idea was used in recognizing speakers using long-term av-
erage spectrum [12]. Given a sequence of talking face images, the
ROI is located to roughly cover the mouth area and then properly
aligned across all frames. The AMI is computed by averaging the
ROI images over the video sequence. Despite its simplicity in com-
putation, the AMI not only contains appearance information but also
describes stylistic articulation gestures of individual speakers. AMI
is found to be fairly invariant against the spoken content. The dimen-
sion of AMI is reduced by Multiple Discriminant Analysis (MDA)
and the resulted feature vectors are recognized by Euclidean distance
based pattern matching. Experimental results show that the proposed
video based features are very effective in discriminating speaking
persons. The video sub-system is combined with a state-of-the-art
audio based speaker verification system via linear score fusion.
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2. THE XM2VTS AUDIO-VIDEO DATABASE

The XM2VTS database [13] is used in our bi-modal speaker veri-
fication experiments. It is by far the largest audio-video databases
designed for multi-modal biometric research. Face image sequences
and speech were simultaneously recorded. The database involves
295 subjects. Each of them has 4 sessions recorded with an inter-
session interval of one month. Each session consists of two video
shots, in each of which a string of 20 English digits was spoken.
The 295 subjects were randomly divided into 200 clients, 25 evalu-
ation imposters and 70 test imposters. In our experiments, the rec-
ommended Configuration II is adopted [13]. That is, the first two
sessions of the clients (4 shots per client) are used for training of
client models, the third session is for system tuning and the fourth
session is used as test data.

Originally the audio signals in XM2VTS were sampled at 32kHz.
In our experiments, they were down-sampled to 16kHz. In addition
to the original audio, two sets of noise-corrupted audio data are cre-
ated. White noise is digitally added to the original audio at the SNRs
of 10dB and 5dB.

All video clips were captured with a blue background at the
frame rate of 25 frames per second (fps). The original resolution
is 720*576 pixels with 24-bit colors. In order to simulate the video
quality of typical handheld devices, the images are Gaussian blurred
(radius: 1 pixel) [14] and down-sampled to 360*288 pixels. Further-
more, the color images are converted into 8-bit gray-scale images for
subsequent processing.

3. AVERAGED MOUTH IMAGES FOR SPEAKER
CHARACTERIZATION

3.1. Mouth Corner Detection

In the intended application, the video captures the frontal face of
a speaker. To extract articulation-related visual features, we firstly
need to locate the ROI, which is a small area around the mouth. Lo-
calization of the mouth from a face image has been a research topic
for many years. State-of-the-art techniques of lip localization can
achieve good performance if there is no substantial illumination vari-
ation. In this research, we assume that the ROI for feature extraction
can be reliably detected. Without tackling the localization problem
in depth, we adopt a semi-automatic method of mouth corner detec-
tion to localize the ROI. For the first frame of a video sequence, the
two mouth corners are manually marked. Given a subsequent frame,
the mouth corners are determined around the neighboring regions of
the corner positions of the previous frame. The method described in
[15] is adopted to perform corner searching. The major steps are: 1)
Canny edge detection - every detected edge is regarded as a candi-
date for corner lines; 2) selection of corner line pairs using a small
moving window; 3) clustering of nearby corners; and 4) search for
the best corner candidate based on a cost function that measures the
dissimilarity of inner and outer mouth corner areas.

Figure 1 shows some example results of mouth corner detection.
This method seems not to be robust to faces with complex textures,
or with the mouth corners covered by bushy beard. There are 31
subjects (out of 295) that have such problems. They are not used in
our experiments. In practice, the skin texture or the beard itself can
be a distinctive feature for speaker recognition, but this is beyond the
scope of this paper. The remaining 264 subjects include 182 clients,
20 evaluation imposters and 62 test imposters.

Based on the corner locations, the facial pose in each frame is
normalized by rotation and a rectangle of 60*50 pixels is cropped to

give an image of the ROI.

Fig. 1. Example results of mouth corner detection

3.2. Averaged Mouth Images

The information conveyed by a sequence of talking mouth images
can be categorized into those being related to the speaker identity and
those describing the residual situations, such as pose, ambient light-
ing, expressions and linguistic contents. Our motivation is to discard
the speaker-irrelevant variations and keep speaker-dependent phys-
ical and behavioral features by exploring all contents in the image
sequence. The physical features refer mainly to the geometric shape
of the lips while the behavioral features are related to the movement
of lips and other articulators in correspondence to speech production.

The geometric features of lips can be estimated from individual
images. However, the resulted features would depend on the con-
tent being spoken at that moment. To remove such text-dependent
variation, we can use the average image over many frames in the
video sequence. If the video sequence covers different articulatory
gestures, the resulted average image would give a more robust rep-
resentation of the geometric features than the individual images.

An intuitive understanding of features related to the movement
of articulators is that different people have different articulatory styles
when speaking the same utterance. For examples, when producing
the same phoneme or word, some speakers tend to widely open their
mouths while the others may only open slightly; some speakers tend
to move the lips in a specific direction, and for some speakers, the
teeth are always visible when speaking. The time-averaged image
described above also contains such stylistic features of articulation.

Given a video sequence of aligned mouth images, the average
intensity level at pixel (i, j) is computed as

xi,j =
1

M

M�

m=1

xi,j,m (1)

where xi,j,m is the intensity value of pixel (i, j) in frame m, and
M is the total number of frames in the video clip. xi,j is used to
construct the averaged mouth image (AMI).

Figure 2 shows some examples of AMI computed from four
speakers in the XM2VTS database. The four rows are taken from
four different time sessions. The same content was spoken among all
sessions. The ROIs are localized as described in Section 3.1. Sub-
sequently the images are rotated and aligned so that the intra-class
variations caused by head movement and small pose changes can be
reduced. As seen from the figure, good inter-session consistency can
be attained in the AMIs from the same speaker.

In Figure 3, three AMIs from the same speaker with different
spoken contents are compared. In all cases, the duration of video is
about 5 seconds, in which more than 30 English phonemes are ut-
tered and various articulation gestures are covered. It can be seen
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that the AMIs of the same speaker remain fairly invariant for differ-
ent spoken contents.
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Fig. 2. Examples of Averaged Mouth Images. Each column contains
the AMIs of the same speaker in four different recording sessions

(a) (c)(b)

Fig. 3. AMIs of the same speaker uttering different contents. (a)
English digit string “0 1 2 3 4 5 6 7 8 9” (b) English digit string “5
0 6 9 2 8 1 3 7 4” (c) English sentence “Joe took fathers green shoe
bench out” [13]

Figure 4 demonstrates how the speaker-specific stylistic features
of articulation are represented by AMI. Figure 4(a) and (b) are snap-
shot mouth images of two different speakers. They are cropped from
the first frames of the video, when the speakers are silent. These
images reflect the static appearance of their mouths and related ar-
ticulators. Figure 4(c) and (d) are the AMIs of these two speakers.
Although the mouths of the two speakers look very similar, there are
noticeable differences being revealed in their AMIs. The teeth of
speaker A is more visible than speaker B. Speaker B tends to round
his lower lip while speaking, while the lower lip of speaker A is more
like a rectangle.

(a) (b) (c) (d)

Speaker A Speaker ASpeaker B Speaker B

Fig. 4. Comparison between still mouth images and AMIs.

3.3. Multiple Discriminant Analysis and Pattern Matching

Each AMI can be regarded as a still image, which has the same size
as the cropped mouth images (60*50 pixels). A dimension reduc-
tion method is needed for pattern classification. Principle Compo-
nent Analysis (PCA) and Linear Discriminant Analysis (LDA) are
two commonly used linear transformation methods that project high-
dimensional data to a low-dimensional space. PCA is often used for
data representation, while LDA is effective in discriminative classifi-
cation [16]. They have been widely used for face feature extraction.
Since the dissimilarities of mouth geometries among different per-
sons are not as significant as that among their faces, holistic methods
such as PCA may not be effective. This was observed in our prelimi-
nary experiments on the analysis of AMI. The method of Fisherfaces
based on Multiple Discriminant Analysis (a multi-class generaliza-
tion of LDA) [17] is used to transform an AMI into a feature vector
of 181 dimensions. This feature vector is used for pattern matching
based on Euclidean distance. For each client, four reference tem-
plates are established from the four video clips of the training ses-
sions. Given an incoming feature vector, its distance with respect to
the client is the average Euclidean distance with respect to the four
reference templates.

4. BI-MODAL VERIFICATION EXPERIMENTS

4.1. Audio Sub-system

An audio based speaker verification system is developed using the
state-of-the-art GMM-UBM technique [18]. The acoustic features
include 13 Mel-frequency cepstral coefficients (MFCC) and their
first and second-order derivatives. The universal background model
(UBM) is a Gaussian mixture model (GMM) with 256 mixture com-
ponents. It is trained with 2 sessions of the 182 clients. Speaker
models are adapted from the UBM by Maximum a Posteriori (MAP)
estimation. For each test utterance, the log-likelihood ratio, �a is
computed as the difference between the log likelihoods of the claimed
speaker model and the background model.

4.2. Score Fusion of Audio and Video Sub-systems

The verification scores produced by the two sub-systems are fused
by simple linear combination, i.e.

s = β · Ψ(
1

dv
) + (1 − β) · Ψ(�a) (2)

where β is the weighting factor trained from the evaluation session
(the third session), dv is the Euclidean distance produced by the
video sub-system, �a is the log-likelihood ratio produced from the
audio sub-system. Ψ is a normalization operator, which attempts to
equalize the dynamic ranges of the two sets of scores.

4.3. Results and Discussion

Three experiments have been conducted for the cases of “original
audio”, “noisy audio 10dB” and “noisy audio 5dB” respectively (see
Section 2). Figure 5 shows the detection error tradeoff (DET) curves
attained by the bi-modal system as well as the uni-modal sub-systems.
For the clarity of presentation, only “noisy audio 5dB” is shown in
the figure. The DET curve for “noisy audio 10dB” resides between
those of “original audio” and “noisy audio 5dB”. Table 1 gives the
performance in terms of Equal Error Rates (EER).

It can be seen that the bi-modal system takes the complementary
advantages of the audio and video sub-systems. With the presence
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Fig. 5. Performance (DET curves) of uni-modal and bi-modal
speaker verification

Table 1. Performance (EERs) of uni-modal and bi-modal speaker
verification

Video Audio Bi-Modal

Original Audio 3.02% 1.37%
Noisy Audio 10dB 7.69% 7.42% 1.65%
Noisy Audio 5dB 10.16% 1.92%

of audio noise, the performance of the audio sub-system degrades
significantly but the bi-modal system is not affected much. In par-
ticular, although the EERs of the two sub-systems are 7.69% and
10.16% respectively (in the case of 5dB audio SNR), the bi-modal
system can attain a much lower EER of 1.92%. This clearly shows
that the video based features are highly complementary to the audio
based ones.

5. CONCLUSIONS

AMI is very similar to long-term spectral average that has been used
in text-independent audio-based speaker verification. While the use
of AMI has attained a high performance level, it doesn’t require ex-
plicit and precise extraction of lip contours or other feature points.
We have also evaluated the AMI features in the task of video-based
speaker identification and achieved an accuracy that is comparable
to the methods of using the entire face. It is also clear that the AMI
features are highly complementary to the acoustic features. The con-
tinuation of this work will be an investigation on the use of phoneme-
dependent AMI, where the phoneme boundaries are detected by au-
tomatic speech recognition techniques.
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