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ABSTRACT 

Given a large set of video database, how to connect video 

segments with a certain set of semantic concepts with least 

manual labors is an elementary step for video indexing and 

searching. Due to the large gap between high-level 

semantics and low-level features, automatic video 

annotation with high accuracy is a challenging task.  In this 

paper, we propose a novel automatic video annotation 

framework, which improves the annotation performance by 

learning from unlabeled samples and exploring temporal 

relationship in video sequences. To effectively learn from 

unlabeled data, a sample selection scheme based on 

combining a set of complementary predictors is proposed, 

which iteratively refines the performance of the initial 

predictors.  A filtering-based method is applied to further 

improve the annotation accuracy as well, in which video 

temporal relationship is sufficiently exploited. Experiment 

results show that the proposed automatic video annotation 

method performs superior to general supervised learning 

methods and co-training.

1. INTRODUCTION 

Video annotation is to assign certain predefined semantic 

concepts to video segments, which is an important step for 

further content analysis and semantic-level process [1]. As 

there is a large gap between high-level semantics and low-

level features, typically we use learning-based methods to 

learn statistic models of the semantic concepts using a large 

labeled corpus aiming at achieving good generalization 

ability.  However, due to the large data size of videos, 

manual labeling of video data is much more labor-intensive 

and subject to human errors, as well as it is difficult to 

obtain large number of labeled samples.  On the contrary, 

unlabeled samples are plentiful and easy to be obtained.  

Therefore, many semi-supervised learning techniques, 

which exploit the information hidden in the unlabeled data, 

are proposed in recent years [2][3][4].  

Co-training is a frequently applied method among these 

works, which utilizes the complementarity of two predictors 

to explore the unlabeled samples either through different 

features extracted on same data [2] or through different 

supervised learning algorithm [3]. In a typical co-training 

process, each predictor iteratively selects a set of unlabeled 

samples, which are considered to be correctly predicted, to 

teach the other predictor.  However, there is a trade-off  

between the number of selected samples and the possible 

performance improvement after introducing these samples.  

In a round of co-training, if the number of newly added 

samples is much less than that of the original training set, 

co-training can not improve the initial predictors obviously. 

On the contrary, the more samples are selected, the more 

misclassifications may be introduced in, which may lead to 

unstable or even degraded performance. To tackle this issue, 

a better approach is to fix the number or ratio of selected 

samples and then try to reduce the misclassifications in 

these samples. A possible method for reducing 

misclassification is to combine each individual prediction 

by comparing their confidence levels [4]. However, due to 

the different feature spaces or learning methods, it is not 

appropriate to compare the confidence levels of different 

predictors directly.  

In this paper, we propose a novel automatic video 

annotation approach derived from the typical co-training 

algorithm, which exploits both the model and the feature 

complementarity to improve the annotation performance.  In 

this scheme, a generative model based predictor and two 

discriminative model based predictors generated on 

complementary feature sets are selected as the base learners.  

All the predictors are refined progressively by learning from 

unlabeled samples, in which the labels given by different 

predictors are combined through a voting method, so that 

the problem of confidence level comparison is avoided.  

On the other hand, it is observed that although the 

semantic concept has large variance, locally it is 

consistently distributed. That is, typically the variation of a 

concept and its corresponding features within the clip of 

video is relatively smaller than those among different videos.  

Moreover, the concept drifting is gradual in most cases [1]. 

Such characteristics are beneficial to further improve the 

annotation accuracy. In this paper, a filtering based method 

is applied to exploit the video temporal consistency.  

The remainder of the paper is organized as follows. In 

Section 2, the overview of the automatic video annotation 
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framework is described. Then the confidence level 

calculation in different learning algorithms (i.e. GMMs, 

SVMs) is presented in Section 3.  Next, we detail the typical 

co-training scheme based on complementary SVMs and our 

proposed scheme in Section 4.  In Section 5, the experiment 

results are shown to prove the efficiency of proposed 

scheme, followed by the concluding remarks and the future 

works in Section 6. 

2. FRAMEWORK OVERVIEW 

The proposed automatic annotation framework is illustrated 

in Figure 1. Firstly, the videos are segmented into shots 

according to timestamp (for DVs) or visual similarity (for 

analog videos) [4]. In the following process, each shot is 

represented by a certain number of frames uniformly 

excerpted from the shot.   

Yes
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Testing set1 Testing set3

Predictor f2

Sample selection

No more sample 

selected?

No

Label correction 

Output Label

Testing set2

Training set2Training set1 Training set3
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The complete low-level feature set we used is a 90-D 

feature (consisting of 45-D color histogram and 45-D layout 

edge histogram [4]). Predictor f1, represented by a GMM 

(Gaussian Mixture Model), is trained on the 90-D complete 

feature set.  Predictor f2 and f3, represented by Gaussian 

RBF kernel SVMs (Support Vector Machines), are trained 

on a natural split of the complete feature set used by 

predictor f1. That is, predictor f2 is trained on the color 

histogram features and predictor f3 is trained on the layout 

edge histogram features. The complementarity of color 

features and edge features is shown in [4].  

The annotation process consists of three primary steps, 

including Model Training/Retraining, Sample Selection, and 

Label Correction.  Given the training set, each predictor is 

trained or retrained independently. Predictor f1 is obtained 

by using a typical EM (Expectation Maximization) 

algorithm, while predictor f2 and f3 are trained by using the 

algorithms described in SVM-torch [9].  

In one round of the learning process, each sample in the 

test set is assigned three labels (may be different) by the 

three different predictors, denoted by fi(xi,k), i=1,2,3 (xi,k is 

the k-th test sample in testing set i), with corresponding 

confidence levels of the predictions.  Then, each predictor 

selects a certain number of samples, which are considered to 

be the most “confident” ones, as the candidates to be added 

to the training set for updating the initial predictors.  Their 

labels are decided by the voting result of the current 

predictions, that is,  fi(xi,k) i=1,2,3. 

In the label correction step, some isolated misclassified 

samples are further corrected by taking advantage of the 

temporal relationship among consecutive video shots.  The 

learning process is terminated if there are no more samples 

selected for next iteration, and the final predictions of the 

testing set are taken as the annotation results.  

To clarify the idea, we take two simple semantic 

concepts, indoor and outdoor, as an example to present our 

proposed automatic annotation scheme. 

3. CONFIDENCE LEVEL CALCULATION FOR 

DIFFERENT LEARNING METHODS 

In the sample selection step, each predictor needs to select 

samples from the testing set according to the prediction 

confidence levels. Typically the prediction of the test 

sample is decided based on MAP (Maximum a Posterior) 

criterion.  

For a GMM model, the confidence level is defined by 

{0,1}
( ) ( ( ) ( )) max ( ( ) | )

l
C P f L P lx x x x x     (1)

where ( ( ) | )P l x x  is the a-posterior probability of a predictor, 

and L(x) is the true label of the test sample x.

Given a test sample x, the output of SVM classifier f(x) 

is

( ) ( )f h bx x          (2) 

where ( ) ( , )i i i

i

h y kx x x  lies in a Reproducing Kernel 

Hilbert Space (RKHS) induced by kernel k [7]. Although f(x)

provides the distance of x from the separating hyper-plane 

and its sign determines the class label, it can not be directly 

translated to a probability value that is useful for estimating 

the prediction confidence level.  

In [7], f(x) is mapped to the posterior probability 

( ( ) 1| ( ))P l fx x  by a parametric form of sigmoid as 

follows 

1
( ( ) 1| ( ))

1 exp( ( ) )
P l f

A f B
x x

x
         (3) 

where A, B are parameters of sigmoid function, which are 

fitted using maximum likelihood estimation from the 

training set. With the trained sigmoid function, the posterior 

Figure.1 Flowchart of the automatic annotation 
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probability and the confidence level of SVM-based 

predictors are calculated as those of GMM-based predictor. 

4. SAMPLE SELECTION AND LABEL 

CORRECTION 

In this section, we briefly introduce a typical co-training 

scheme firstly, and then detail the proposed sample 

selection and label correction scheme. 

4.1. Co-training based on complementary SVMs 

The typical co-training scheme is illustrated as follows: 

Input: 

Two feature sets V1 and V2; a set of labeled samples L; and a 

set of unlabeled samples U.

While U is not empty Do

C1 teaches C2:

(a) Train classifier C1 based on feature sets V1 on training data 

set L.

(b) Classify all samples in U using classifier C1.

(c) Move the top-n samples from U, on which C1 makes the 

most confident predictions, to L.

C2 teaches C1:

(a) Train classifier C2 based on feature sets V2 on training data 

set L.

(b) Classify all samples in U using classifier C2

(c) Move the top-n samples from U, on which C2 makes the 

most confident predictions, to L.

End While 

Output: Classifiers C1 and C2

Co-training algorithm is effective to combine labeled 

and unlabeled data by taking advantage of different views 

of the same data.  Here, we take the CO-SVM (CO-training 

with SVM) as a baseline learning algorithm. 

4.2. Proposed sample selection scheme 

As aforementioned, it is significant to select enough test 

samples with high classification accuracy, to improve the 

annotation performance of co-training algorithm.  

In the proposed sample selection scheme, each 

predictor selects a certain number of test samples according 

to the rank list of the confidence levels, denoted 

by , {1,2,3}iK i . For each 
1 2 3k K K K K , where

iK

contains the indices of selected samples by predictor fi, we 

redecide the label of the corresponding sample (l(k)) as  

1 1, 1 1, 2 2,

1 1, 3 3,

2 2, 2 2, 1 1,

2 2, 3 3,

3 3,

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

k k k

k k

k k k

k k

k

f if f f

or f f

l k f elseif f f

or f f

f otherwise

x x x

x x

x x x

x x

x

            (4) 

Then, the newly selected samples, denoted by 

,{( , ( )) | , 1, 2,3}i i kS l k k K ix  is added to the corresponding 

training set for next iteration of the learning process.  

Similar to co-training, this method also takes advantage of 

complementarity of selected samples, while the prediction 

accuracy of selected samples is further improved by voting 

the results of the three predictions. 

4.3. Label correction based on filtering operation 

To further improve the annotation accuracy, the temporal 

relationship between video shots is exploited.  For example, 

it is less possible for such label sequence “…I, I, O, I, I… ”, 

where symbol “I” means indoor, and symbol “O” means 

outdoor, to appear within a video clip, especially when these 

shots are similar in terms of colors or close in terms of 

timestamp.  That is, the isolated “O” in the middle of a 

series of “I” may be misclassified with high probability in 

such case.  

To correct this type of errors, a filtering operation on 

the label sequence is applied as follows: A window with 

fixed length (say, 3 or 5) is sliding along the label sequence. 

If the label at the middle of window is different with those 

at other positions, it is regarded as misclassified. 

A more sophisticated method we may employ is based 

on pre-clustering results. The clusters of test video shots are 

obtained based on visual similarity and temporal order in an 

over-segmentation manner [4], in which the shots in a 

certain cluster mostly belong to a same semantic concept.  

Then, the sliding window is restricted in each cluster.   

Alternatively, we may use voting to redecide the labels of 

samples in each cluster. In experiments, we obtain very 

close results for all these methods. 

5. EXPERIMENTS  

In order to evaluate the performance of the proposed video 

annotation framework, several experiments are conducted 

on a home video database, which contains about 60 home 

videos. Each video is about one hour in duration and each 

shot is manually labeled as “indoor” or “outdoor” according 

to the definition in TRECVid [8].  The video database 

contains a wide variety of contents including wedding, 

vacation, meeting, party, and so on.  Ten videos are 

randomly selected as the initial training set, and the others 

are taken as the testing set.  

As mentioned in Section 2, predictor f2 and f3 are 

generated based on the complementary feature sets (45-D 

color features and 45-D layout edge features), respectively, 

while predictor f1 is trained on the 90-D complete feature set. 

Experiment 1: Classification results of supervised learning 

on different learning algorithms and feature sets.  

Firstly, we take the supervised learning algorithm on 

different training sets as the baseline results (i.e., predictors 
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are trained on labeled training set and then are used to 

classify each test sample). Also, the low-bound error rates 

are obtained by taking the whole dataset as training set (i.e., 

training error on the whole dataset).  The results are shown 

in Table 1.  

Table 1: Classification results of supervised learning 

scheme based on different feature sets and learning 

algorithms.

Models Feature set Error rate 
Low-bound 

error rate 

SVM model Color  0.239 0.0873 

SVM model   Edge  0.298 0.0625 

SVM model Color+Edge     0.208 0.005 

GMM model Color+Edge   0.214 0.1236 

Experiment 2:  Classification results of CO-SVM.

In this experiment, we apply CO-SVM scheme (mentioned 

in Section 4.1) for video classification/annotation. The 

SVMs trained on color and edge feature sets are selected as 

the initial predictors. The classification results are shown in 

Figure 2.  Obviously the CO-SVM is more effective than 

the general supervised learning method. 
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Experiment 3: Classification results of proposed scheme 

based on combining complementary predictors and label 

correction.  

In this experiment, we apply the proposed sample selection 

and label correction scheme on video classification. The 

classification results of each learning round are shown in 

Figure 3. It can be seen that the performance of the 

proposed scheme outperforms CO-SVM scheme with the 

same training set in terms of classification error rate, which 

is close to the low-bound error rate of GMM model. 

6. CONCLUSION AND FUTURE WORK

This paper has proposed a novel automatic video annotation 

framework based on learning from unlabeled video data and 

exploring temporal relationship of video shots.  Experiment 

results have shown that the annotation accuracy is 

remarkably improved by the proposed scheme.  

Future work will be to apply the scheme on multiple 

semantic concepts and a larger video database. Also, in 

current scheme, the annotation accuracy is mainly 

constrained by the initial training set.  The methods for 

dynamically constructing more efficient training set will be 

studied in next step. 
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Figure.3. Classification error rate of proposed 

sample selection scheme with label correction.

Figure.2. Classification error rate of CO-SVM 

V ­ 504


